
Supplementary Note 6: Numerical Validation

a) Numerical Tests for Surface Diffusion

A series of numerical test is conducted to assess the performance of the surface
diffusion on a cubic grid. We use the test suggested in [1].

Diffusion on a sphere

The following asymmetric solution

C(θ, ψ, t) = 2 +
1

2
e−2t cosψ sin θ + e−6t cos 2ψ sin2 θ + e−12t cos 3ψ sin3 θ (1)

of the diffusion equation

∂C

∂t
=

1

sin θ

∂
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(
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)
+

1

sin2 θ

∂2C

∂θ2

on a unit sphere will will be used as a reference for comparisons with the nu-
merical algorithm.

The initial condition of the numerical solution is constructed by populating each
surface element with a concentration given by C(θc, ψc, t), where θc and ψc are
the position of the center of a surface element in spherical coordinates.

We assess the performance of the method by running the simulation using reso-
lutions ranging from 5 to 157 grid elements with side length h for the diamater
of the sphere. Additionally the distance ∆k between surface elements used to
estimate the local curvature is varied between 2 and 39. Each simulation is
integrated untill t = 1.

Supplementary Figure 9 shows the largest relative error that occured over
the course of the individual simulations as a function of the diameter of the
sphere meassured in grid elements. Symbols with common shapes and colors
represent simulations with common distance ∆k used for estimating the local
curvature. The maximum error shows two distict behaviors for a given distance
∆k, for small numbers of grid elements, i.e. large grid constants, reductions
of the grid constants lead to a reduction of the error following a power law.
However, this relation only holds up untill a certain ∆k dependent grid size.
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Supplementary Figure 9: Maximum relative error in L1, L2 and L∞ norm as
a function of the grid size used in the simulation. Symbol shapes and colors
indicate the distance ∆k used for curvature estimation.

For smaller grid constants the errors do either decrease with a smaller power
or begin to oscillate. Thus in order to take advantage of larger grid sizes ∆k
has to be adapted. Comparing the different error norms shows no qualitative
difference between these norms.

Supplementary Figure 10 shows the time dependence of the mean square
error for simulations with different grid constants and step sizes. The initial
contition is set up to match the analytic solution exactly, which leads to a sharp
rise of the error at the beginning of the simulation. Local disretization errors in
regions with high concentration gradients lead to an initial growth of the error.
These error terms are dissipated over time by the diffusion, while discretization
errors contribute less to the error of the solution due to shallower concentration
gradients, which is reflected by the decreasing error as the simulations continue.

Supplementary Figure 11(a) illustrates the dependence of the maximum
L2 error of a simulation on the step size ∆k for a mid-resolution simulation.
For small ∆k an increase of the step size leads to a decrease of the maximum
L2 error of a simulation, however for step sizes larger than a grid constant
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Supplementary Figure 10: Relative error in L2 norm as a function of time. Line
colors indicate the distance ∆k used for curvature estimation.
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(a) Effect of increasing the distance ∆k for
a given grid diameter.

●●

●●

●●

●●●●●

●●●●●●●

●●

●

●

● ● ● ●

● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ●

0 50 100 150

5
10

15

2/h

O
pt

im
al

 Δ
k

(b) Optimal choice of the distance ∆k for
varying grid diameters. Points indicate
results from numerical experiments, the
solid line shows the theoretical optimum
∆k = h−2/3

Supplementary Figure 11: Step size ∆k affects the simulation performance.

dependent threshold the error will begin to oscillate with further increases of
the step size ∆k.

The optimal step size ∆k for estimating the local surface curvature is given in
[1] as ∆k = h−2/3. Since h can be interpreted as the inverse radius of the sphere
in grid constants we can estimate the optimal value of ∆k for arbitrary shapes
by defining the scale at which a sphere of a given radius is optimaly sampled.
sphere of a Supplementary Figure 11(b) shows the optimal ∆k obtained
in numerical experiments. Values of ∆k at a given grid constant are assessed
by comparing the largest relative L2 error that occured in each simulation.
A naive approach to choose the optimal value would be to pick the ∆k for
which the maximum error occuring during a simulation is smallest. However,
Supplementary Figure 11(a) shows that the error is nearly independend
from the step size after a certain threshold is exceeded. This weak complex
dependency of the error on ∆k and the grid constant can be considered noise
for all practical purposes. Therefore, a value ∆k is considered optimal if it is the
smallest ∆k that has an associated L2 error that is within 10% of the smallest
observed error.

Supplementary Figure 13 illustrates the effect of the local adaption proce-
dure on the geometry of the sphere. As described in the main text and Supple-
mentary Note 3d, the geometry of the surface of the cubic grid is adapted to
approximate a curved surface. The visualizations in Supplementary Figure
13 rely on surface normals, which are derived from the adapted geometry, as an
input to the shading model that illuminates the visualization. The vertex nor-
mals that enter the shading model itself are the average of the surface normals
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Supplementary Figure 13: Visualization of the effect of increasing step size ∆k.
The heatmap shows the concentration in arbitrary units.
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Supplementary Figure 14: Visualization of the simulation used to test the ac-
curacy of the numerical solution of the diffusion equations. The heatmap shows
the concentration in arbitrary units.

of the surfaces sharing the vertex under consideration.

Supplementary Figure 14 visualizes the numerical solution of the diffusion
equation with the initial conditions given by the solution (Equation 1) for t = 0.
The method of interpolating the surface normals described above is employed
here as well.

Supplementary Figure 15 shows the magnitude of the local relative error
for simulations with varying resolution. As most changes to the error occur
during the first half of the simulation the error is only shown up till t = 0.4.
The viewpoint corresponds to Figure 14, comparing the solution with the error,
it becomes obvious that the largest errors occur in the regions with the steep-
est gradients. As the gradients become shallower the magnitude of the error
decreases.
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Supplementary Figure 15: Visualization of distribution of the relative error.

6



References

[1] I. L. Novak, F. Gao, Y.-S. Choi, D. Resasco, J. C. Schaff, B. M. Slepchenko,
Diffusion on a Curved Surface Coupled to Diffusion in the Volume: Appli-
cation to Cell Biology., J Comput Phys. 2007 Oct 1;226(2):1271-1290.

7



b) Numerical Tests for 3-Dimensional (Bulk) Diffusion

We test the accuracy of the 3-dimensional (bulk) diffusion algorithms in Simmune by using the analytical
solution of the diffusion equation on a box with no flux boundary conditions, a side length L and a diffusing
particle with diffusion constant D.

c(t, x, y, z) =
∞∑

i,j,k=0

aijk cos

(
iπx

L

)
cos

(
jπy

L

)
cos

(
kπz

L

)

· exp
(
−Dt

((
iπ

L

)2

+

(
jπ

L

)2

+

(
kπ

L

)2
))

(1)

We set the side length of the box to L = 15µm, and choose a a rather conservative value for the diffusion
constant of D = 10−12m2

s , describing the slow diffusion of a large scaffold protein complex. In order to
produce biologically plausible concentration fields we assume that the coefficient aijk = 0 for all i, j or k
larger than 3. The coefficient a000 determines the average concentration, which we set to 0.4µmol/l. All
other coefficients are set to

aijk = ρ
10−8

i+ j + k + 1
,

where ρ ∈ {0 . . . 5} is an integer drawn from a uniform random distribution. The factor (i+ j + k + 1)−1 is
introduced to suppress highly oscillating components leading to unrealistically steep gradients in the initial
distribution of the diffusing molecule.

In order to get a better understanding of the concentration distributions used in this analysis, we choose
one representative distribution and plot an axis parallel slice for through the location of the steepest gradient,
choosing the slice orthogonal to the smallest component of the gradient.

Discretization error due to undersampling

First we asses the discretization error due to undersampling the exact distribution. When setting the initial
condition of the numerical solution we have the choice to set the numerical concentration of each voxel to the
average of the exact concentration integrated over the voxel, or to set the numerical concentration of each
voxel to the exact concentration sampled at a single point e.g. the center of the voxel.

We set the initial condition of the numerical solution employing the first method, thereby ensuring that
the average concentration (i.e. total number of molecules) introduced into the numerical simulation matches
the average concentration in the exact solution.

Supplementary Figure 17 shows the distribution of the errror for n = 40 different concentration
distributions for a range of grid resolutions. The error of the numerical solution in meassures in the L∞-norm
thus capturing effects such as anisotropic diffusion due to discretization artifacts. We scale the L∞-norm by
the exact value of the concentration at the point at which the absolute differences between exact and numeric
concentration is maximal. The discretization converges to the exact solution, as expected. This however,
merly shows the correct setting of the initial conditions.

In Supplementary Figure 18 we observe the relation between the maximal observed error and the
maximal discretized gradient. Each Line in the figure connects the same concentration distribution observed
at different resolutions. The lowest grid resolutions are unable to captute the actual gradients, which leads
to the increase of the observed gradient for a given distribution.

Discretization error of the numerical solution

Supplementary Figure 18 shows the time course of the L∞ error for n = 40 different initial conditions
for grid resolutions ranging from 6 to 48 voxels. The qualitative behaviour of the error does not depend on
the grid resolution. We observe conververgence of the error with decreasing voxel size. The fast decay of
the error by an order of magnitude within the first two seconds of the simulation is due to the fast decay of
high frequence modes in diffusive processes. The frequencies i, j, k enter the time dependent factor T (t) of
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Supplementary Figure 16: Visualization of a concentration distribution in the plane containing the maximum
in plane gradient. The concentrations are color coded as indicated in the figure legend, lines indicate locations
of equal concentrations. Thick lines are plotted at intervalls of 50nmol/l, thin lines at intervalls of 5nmol/l.

the solution of the diffusion equation (2) quadratically

T (t) = exp

(
−Dt

((
iπ

L

)2

+

(
jπ

L

)2

+

(
kπ

L

)2
))

. (2)

The high frequency terms of the inital discretization error decay together with the high frequency terms of
the solution.

The error increases over the next few seconds before decaying with the expected suppression ∝ exp(−t).
This is due to low frequency error modes that stem from the anisotropy of the discretized laplacian, and lead
to slower diffusion near concentration extrema, as can be seen if Supplementary Figure 20. However,
even for very low diffusion constants of D = 10−12m2

s and coarse dircretizations with voxel sizes on the order
of one micron the relative error decays to values below 10−3 within 10 s.
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Supplementary Figure 17: Distribution of relative L∞-errors at t = 0. Boxes show the 1st, 2nd, 3rd quartile,
whiskers extend 3/2 interquartile ranges (n = 40).
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Supplementary Figure 18: Relationship between the discretization error and gradient strength. Values cor-
responding to the same set of coefficients aijk are connected by lines to improve readability.
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Supplementary Figure 19: Time course of the L∞ error for n = 40 random initial concentration distributions
for grid resolutions ranging from 6 to 48 voxels.
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Supplementary Figure 20: Visualization of the relative L∞ error at t = 5 s using voxels with a side length of
1µm. The relative L∞ error is color coded as indicated in the figure legend, lines indicate locations of equal
concentrations. Thick lines are plotted at intervalls of 50nmol/l, thin lines at intervalls of 5nmol/l. The
first panel corresponds to the slice orientation displayed in figure 16.
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