## **Supplemental Data**

*Informed Consent*. This study was approved by the Institutional Review Board of the Yale University School of Medicine.

*Sanger Sequencing*. The exon–intron boundaries of the *FAM38A* gene were determined using the University of California, Santa Cruz (UCSC) Genome Browser (http://genome.ucsc.edu). Exon-flanking primer pairs flanking exons of interest were designed with Primer 3 software (http://primer3.sourceforge.net/webif.php)(Table 1). These coding exons and flanking DNA were amplified from patient genomic DNA by polymerase chain reaction (PCR). PCR amplicons were subjected to capillary-based nucleotide sequence analysis.

*Discovery Proteomics*. Materials. Urea, Tris-HCl, CaCl<sub>2</sub>, iodoacetamide (IAA) were from Sigma-Aldrich (St. Louis, MO). Chloroform and Dithiothretitol (DTT) were from American Bioanalytical (Natick, MA). Methanol, acetonitrile (ACN), trifluoroacetic acid (TFA), formic acid (FA) and HPLC grade water were obtained from Burdick and Jackson (Morristown, NH). Sequencing grade modified trypsin was from Promega (Madison,WI). UltraMicroSpin columns (C<sub>18</sub>) were from The Nest Group Inc. (Southborough, MA). Supplemental Figure S1. Identification of *FAM38A* mRNA in human erythroid cell RNA. mRNA was prepared from cultured, primary human erythroid progenitor cells, cDNA prepared by reverse transcription, then amplified with primers tiled across the *FAM38A* locus to amplify four cDNA fragments. The initial PCR reaction utilized the outside, flanking primers, with the second PCR reaction utilizing the internal primers. The four *FAM38A* cDNA fragments were analyzed by agarose gel electrophoresis on ethidium stained gels. These fragments were subcloned and sequenced. The overlapping cDNA fragments corresponded to the human full length *FAM38A* cDNA (GI:257196141). A. Location of primers in the *FAM38A* cDNA. The sequences of these primers are provided in Supplemental Table S1. B. The *FAM38A* cDNA fragments amplified by RT-PCR from human erythroid cell mRNA.

## Supplemental Figure S1A.



## Supplemental Figure S1B.

FAM38A cDNA Fragments



Supplemental Figure S2. Amino acid sequence of human PIEZO1 and location of peptides identified in human erythrocyte membrane ghosts by mass spectrometry. The location of peptides identified in wild type erythrocyte membrane ghosts are shown in red.

| 1    | MEPHVLGAVL         | YWLLLPCALL         | AACLLRFSGL         | SLVYLLFLLL         | LPWFPGPTRC               |
|------|--------------------|--------------------|--------------------|--------------------|--------------------------|
| 51   | GLQGHTGRLL         | RALLGLSLLF         | LVAHLALQIC         | LHIVPRLDQL         | LGPSCSRWET               |
| 101  | LSRHIGVTRL         | DLKDIPNAIR         | LVAPDLGILV         | VSSVCLGICG         | RLARNTRQSP               |
| 151  | HPRELDDDER         | DVDASPTAGL         | QEAATLAPTR         | RSRLAARFRV         | TAHWLLVAAG               |
| 201  | RVLAVTLLAL         | AGIAHPSALS         | SVYLLLFLAL         | CTWWACHFPI         | STRGFSRLCV               |
| 251  | AVGCFGAGHL         | ICLYCYQMPL         | AQALLPPAGI         | WARVLGLKDF         | VGPTNCSSPH               |
| 301  | ALVLNTGLDW         | PVYASPGVLL         | LLCYATASLR         | KLRAYRPSGQ         | RKEAAKGYEA               |
| 351  | RELELAELDQ         | WPQERESDQH         | VVPTAPDTEA         | DNCIVHELTG         | QSSVLRRPVR               |
| 401  | PKRAEPREAS         | PLHSLGHLIM         | DQSYVCALIA         | MMVWSITYHS         | WLTFVLLLWA               |
| 451  | CLIWTVRSRH         | QLAMLCSPCI         | LLYGMTLCCL         | RYVWAMDLRP         | ELPTTLGPVS               |
| 501  | LRQLGLEHTR         | YPCLDLGAML         | LYTLTFWLLL         | RQFVKEKLLK         | WAESPAALTE               |
| 551  | VTVADTEPTR         | TQTLLQSLGE         | LVKGVYAKYW         | IYVCAGMFIV         | VSFAGRLVVY               |
| 601  | KIVYMFLFLL         | CLTLFQVYYS         | LWRKLLKAFW         | WLVVAYTMLV         | LIAVYTFQFQ               |
| 651  | DFPAYWRNLT         | GFTDEQLGDL         | GLEQFSVSEL         | FSSILVPGFF         | LLACILQLHY               |
| 701  | FHRPFMQLTD         | MEHVSLPGTR         | LPRWAHRQDA         | VSGTPLLREE         | QQEHQQQQQE               |
| 751  | EEEEEDSRD          | EGLGVATPHQ         | ATQVPEGAAK         | WGLVAERLLE         | LAAGFSDVLS               |
| 801  | RVQVFLRRLL         | ELHVFKLVAL         | YTVWVALKEV         | SVMNLLLVVL         | WAFALPYPRF               |
| 851  | RPMASCLSTV         | WTCVIIVCKM         | LYQLKVVNPQ         | EYSSNCTEPF         | PNSTNLLPTE               |
| 901  | ISQSLLYRGP         | VDPANWFGVR         | KGFPNLGYIQ         | NHLQVLLLLV         | FEAIVYRRQE               |
| 951  | HYRR <b>QHQLAP</b> | LPAQAVFASG         | <b>TR</b> QQLDQDLL | GCLKYFINFF         | FYKFGLEICF               |
| 1001 | LMAVNVIGQR         | MNFLVTLHGC         | WLVAILTRRH         | RQAIARLWPN         | YCLFLALFLL               |
| 1051 | YQYLLCLGMP         | PALCIDYPWR         | WSRAVPMNSA         | LIKWLYLPDF         | FRAPNSTNLI               |
| 1101 | SDFLLLLCAS         | QQWQVFSAER         | TEEWQRMAGV         | NTDRLEPLRG         | EPNPVPNFIH               |
| 1151 | CRSYLDMLKV         | AVFRYLFWLV         | LVVVFVTGAT         | RISIFGLGYL         | LACFYLLLFG               |
| 1201 | TALLQRDTRA         | RLVLWDCLIL         | YNVTVIISKN         | MLSLLACVFV         | EQMQTGFCWV               |
| 1251 | IQLFSLVCTV         | KGYYDPKEMM         | DRDQDCLLPV         | EEAGIIWDSV         | CFFFLLLQRR               |
| 1301 | VFLSHYYLHV         | RADLQATALL         | ASR <b>GFALYNA</b> | <b>ANLK</b> SIDFHR | RIEEKSLAQL               |
| 1351 | KRQMERIRAK         | QEKHRQGRVD         | RSRPQDTLGP         | KDPGLEPGPD         | SPGGSSPPRR               |
| 1401 | QWWRPWLDHA         | TVIHSGDYFL         | FESDSEEEEE         | AVPEDPRPSA         | QSAFQLAYQA               |
| 1451 | WVTNAQAVLR         | RRQQEQEQAR         | QEQAGQLPTG         | GGPSQEVEPA         | EGPEEAAAGR               |
| 1501 | SHVVQRVLST         | AQFLWMLGQA         | LVDELTRWLQ         | EFTRHHGTMS         | DVLRAER <mark>YLL</mark> |
| 1551 | TQELLQGGEV         | <b>HR</b> GVLDQLYT | SQAEATLPGP         | TEAPNAPSTV         | SSGLGAEEPL               |
| 1601 | SSMTDDMGSP         | LSTGYHTRSG         | SEEAVTDPGE         | REAGASLYQG         | LMRTASELLL               |
| 1651 | DRRLRIPELE         | EAELFAEGQG         | RALRLLRAVY         | QCVAAHSELL         | CYFIIILNHM               |
| 1701 | VTASAGSLVL         | PVLVFLWAML         | SIPRPSKRFW         | MTAIVFTEIA         | VVVKYLFQFG               |
| 1751 | FFPWNSHVVL         | RRYENKPYFP         | PRILGLEKTD         | GYIKYDLVQL         | MALFFHRSQL               |
| 1801 | LCYGLWDHEE         | DSPSKEHDKS         | GEEEQGAEEG         | PGVPAATTED         | HIQVEARVGP               |
| 1851 | TDGTPEPQVE         | LRPRDTRRIS         | LRFRRRKKEG         | PARKGAAAIE         | AEDREEEGE                |
| 1901 | EEKEAPTGRE         | KRPSRSGGRV         | RAAGRRLQGF         | CLSLAQGTYR         | PLRRFFHDIL               |
| 1951 | HTKYRAATDV         | YALMFLADVV         | DFIIIIFGFW         | AFGKHSAATD         | ITSSLSDDQV               |
| 2001 | PEAFLVMLLI         | QFSTMVVDRA         | LYLRKTVLGK         | LAFQVALVLA         | IHLWMFFILP               |
| 2051 | AVTERMFNQN         | VVAQLWYFVK         | CIYFALSAYQ         | IRCGYPTRIL         | GNFLTKKYNH               |
| 2101 | LNLFLFQGFR         | LVPFLVELRA         | VMDWVWTDTT         | LSLSSWMCVE         | DIYANIFIIK               |
| 2151 | CSRETEKKYP         | QPKGQKKKKI         | VKYGMGGLII         | LFLIAIIWFP         | LLFMSLVRSV               |
| 2201 | VGVVNQPIDV         | TVTLKLGGYE         | PLFTMSAQQP         | SIIPFTAQAY         | EELSRQFDPQ               |
| 2251 | PLAMQFISQY         | SPEDIVTAQI         | EGSSGALWRI         | SPPSRAQMKR         | ELYNGTADIT               |
| 2301 | LRFTWNFQRD         | LAKGGTVEYA         | NEKHMLALAP         | NSTARRQLAS         | LLEGTSDQSV               |
| 2351 | VIPNLFPKYI         | RAPNGPEANP         | VKQLQPNEEA         | DYLGVRIQLR         | REQGAGATGF               |
| 2401 | LEWWVIELQE         | CRTDCNLLPM         | VIFSDKVSPP         | SLGFLAGYGI         | MGLYVSIVLV               |
| 2451 | IGKFVRGFFS         | EISHSIMFEE         | LPCVDRILKL         | CQDIFLVRET         | RELELEELY                |
| 2501 | AKLIFLYRSP         | ETMIKWTREK         | Ε                  |                    |                          |

## Supplemental Tables

Supplemental Table S1. Primers for amplification across the FAM38A cDNA.

| Primer 1  | TATAAAGCTTCCGAAGGAGAAGGAGGAGGAAGA | Hind III linker. |
|-----------|-----------------------------------|------------------|
| Primer 2  | TATAGGATCCGCTCTGGTCCATGATGAGGT    | Bam HI linker.   |
| Primer 3  | TATAAAGCTTCCAGCCATGGAGCCGCACGT    | Hind III linker  |
| Primer 4  | TATAGGATCCGCAGTTATCAGCCTCGGTGT    | Bam HI linker    |
| Primer 5  | TATAAAGCTTCTAGGGTGCTGGGTCTCAAG    | Hind III linker. |
| Primer 6  | TATAGGATCCTAGCTGTCCTGCCTGTTCCT    | Bam HI linker.   |
| Primer 7  | TATAAAGCTTCTGGACTGGCCTGTGTATGC    | Hind III linker  |
| Primer 8  | TATAGGATCCACGGATACGCTCCATCTGTC    | Bam HI linker    |
| Primer 9  | TATAAAGCTTGTGGGACTGCCTCATTCTGT    | Hind III linker. |
| Primer 10 | TATAGGATCCCTGGAAGAGGAAGAGGTT      | Bam HI linker.   |
| Primer 11 | TATAAAGCTTAAGAACATGCTGTCGCTCCT    | Hind III linker  |
| Primer 12 | TATAGGATCCACAGGGCGAAGTAGATGCAC    | Bam HI linker    |
| Primer 13 | TATAAAGCTTCATGTTCCTGGCTGATGTTG    | Hind III linker. |
| Primer 14 | TATAGGATCCGCAGTGTCCTTCTCTGACA     | Bam HI linker.   |
| Primer 15 | TATAAAGCTTACGTCCTCCCTATCAGACGA    | Hind III linker  |
| Primer 16 | TATAGGATCCTCTCTGACAGCAGCATCAGG    | Bam HI linker    |

Supplemental Table S2. Primers flanking exons 46 and 51 of the human FAM38A gene.

- Exon 46 tgtaaaacgacggccagtGCCAGCTGGGTACAAGTGAC
- Exon 46 caggaaacagctatgaccAGAATGCGGTTGTGTGACC
- Exon 51 tgtaaaacgacggccagTGCCCATGGTCATTTTCAGT
- Exon 51 caggaaacagctatgacCGGGAGGATGCATCACAG

Supplemental Table S3. Coverage across the FAM 38A locus in patient exome samples.

| Sample:              | HA-006        | HA-032        | HA-128         | HA-135         | HA-136         | M1-24         | M1-38         | M1-39         | M1-40         |       |
|----------------------|---------------|---------------|----------------|----------------|----------------|---------------|---------------|---------------|---------------|-------|
| Source Location:     | Manitoba      | Manitoba      | Manitoba       | Manitoba       | Manitoba       | New York      | New York      | New York      | New York      |       |
| Xerocytosis:         | +             | +             | +              | -              | -              | +             | +             | +             | +             |       |
| Total Reads          | 207,969,448   | 182,763,722   | 221,020,790    | 198,350,788    | 190,200,202    | 76,573,978    | 74,589,346    | 68,595,106    | 75,324,274    |       |
| Non duplicated Reads | 143,326,370   | 137,773,325   | 170,214,149    | 155,290,377    | 152,454,208    | 72,721,380    | 68,878,929    | 64,516,906    | 70,917,040    |       |
| Mapped Reads         | 133,994,834   | 129,220,739   | 159,566,254    | 145,781,211    | 142,780,790    | 67,444,842    | 64,455,562    | 59,940,234    | 65,954,551    |       |
| Mapped Bases         | 9,889,997,216 | 9,544,514,665 | 11,779,921,597 | 10,765,779,161 | 10,545,271,824 | 4,977,902,513 | 4,755,045,595 | 4,421,276,255 | 4,863,508,180 |       |
| On Target Bases      | 4,511,414,200 | 4,895,080,184 | 4,414,613,257  | 3,937,459,838  | 3,979,840,555  | 1,940,838,879 | 1,863,597,226 | 2,310,563,920 | 1,983,913,273 |       |
| Mean Base Coverage   | 126.904164    | 137.255354    | 169.305243     | 151.077232     | 152.665215     | 74.66408      | 71.760007     | 64.893513     | 76.396277     |       |
| No Coverage Bases    | 1.7%          | 1.4%          | 1.4%           | 1.4%           | 1.4%           | 1.7%          | 1.8%          | 1.6%          | 1.7%          |       |
| >= 2 Coverage Bases  | 96.5%         | 97.2%         | 97.4%          | 97.5%          | 97.6%          | 96.9%         | 96.8%         | 96.7%         | 96.8%         |       |
| >= 10 Coverage Bases | 92.9%         | 94.8%         | 94.7%          | 95.3%          | 95.3%          | 92.6%         | 92.9%         | 92.1%         | 93.0%         |       |
| >= 20 Coverage Bases | 89.0%         | 92.0%         | 92.1%          | 92.9%          | 93.0%          | 86.2%         | 87.0%         | 84.9%         | 87.2%         | 87.3% |