Catalytic Coupling of Arene C-H Bonds and Alkynes for the Synthesis of Coumarins: the Substrate Scope and Application to the Development of Neuroimaging Agents

Paul A. Vadola and Dalibor Sames*

Department of Chemistry, Columbia University, 3000 Broadway, New York, New York, 10027

Supporting Information

Table of Contents:

Acid Screen Results	2
X-ray data for compound 14	4
ORTEP for compound 14	5
ORTEP for compound 14	6

Acid Screen Results:

° ∢ ₀	Me N 10 H			
entry	substrate	acid	temp.	observations
1	10	HCI	rt	no reaction, starting material re-isolated
2	10	HCI	80 °C	decomposition
3	10	$HSbF_6$	rt	decomposition
4	10	$HSbF_6$	80 °C	decomposition
5	10	TfOH	rt	complex mixture by ¹ H NMR; no product detected
6	10	TfOH	80 °C	decomposition
7	24	HCI	rt	no reaction, starting material re-isolated
8	24	HCI	80 °C	no reaction, starting material re-isolated
9	24	$HSbF_6$	rt	no reaction, starting material re-isolated
10	24	$HSbF_6$	80 °C	complex mixture by ¹ H NMR; no product detected
11	24	TfOH	rt	no reaction, starting material re-isolated
12	24	TfOH	80 °C	partial alkyne hydration & starting material by ¹ H NMR
13	27	HCI	rt	complex mixture by ¹ H NMR; no product detected
14	27	HCI	80 °C	decomposition
15	27	$HSbF_6$	rt	no reaction, starting material re-isolated
16	27	$HSbF_6$	80 °C	partial alkyne hydration & starting material by ¹ H NMR
17	27	TfOH	rt	no reaction, starting material re-isolated
18	27	TfOH	80 °C	partial alkyne hydration & starting material by ¹ H NMR

To determine the potential role of trace protic acids as the true hydroarylation catalysts we undertook a screen of the corresponding acids, namely HCl in place of both $PtCl_4$ and $Au(PPh_3)Cl$, and $HSbF_6$ in place of $AgSbF_6$. During our investigations of potential hydroarylation catalysts we also examined $Au(PPh_3)Cl/AgOTf$, which we found to be effective, but delivered lower yields than the optimized $Au(PPh_3)Cl/AgSbF_6$ catalyst (76% versus 93% for lead substrate **8**). However, this result prompted us to also investigate triflic acid, as a potential hidden acid catalyst. The *in situ* formation of triflic acid from intended metal triflate catalysts has previously been demonstrated in the literature.¹

The substrates were weighed into glass vials and dissolved in a 1:1 solution of 1,2dichloroethane:1,4-dioxane, 0.05 M to mimic the normal reaction concentration. Stir bars were added, followed by 0.5 mol % of the appropriate acid via microsyringe (the sources of the acids were: $HSbF_6$ 65% aqueous solution from Alfa Aesar; HCl 4 M in 1,4-dioxane from Aldich; neat triflic acid from Aldrich). The introduction of water in the case of the $HSbF_6$ reactions is of minimal consequence since, a) wet solvent is used for the reaction and b) the reaction has been shown to proceed, when catalyzed by $PtCl_4$, in the presence of 5% water in the solvent. The reactions were setup in duplicate and stirred at both room temperature and 80 °C for 4 hours, after which they were analyzed by TLC and ¹H-NMR. The general conclusion, which can be garnered from the data below, is that trace acids, if indeed present, are not capable of promoting the hydroarylation reaction under the standard reaction conditions (i.e. standard solvent, concentration, temperature and reaction time).

1. Dang, T. T.; Boeck, F.; Hintermann, L. J. Org. Chem. 2011, 76, 9353-9361.

X-ray data for Compound 14:

Compound Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions Volume, Z Density (calculated) Absorption coefficient F (000) Crystal size Θ range for data collection Limiting indicies Reflections collected Independent reflections Completeness to $\Theta = 32.69^{\circ}$ Absorption correction Max. and min. transmission Refinement method Data/restraints/parameters Goodness-of-fit on F^2 Final R indices $[I \ge 2\sigma(I)]$ R indicies (all data) Largest diff. peak and hole

14

 $C_{24}H_{24}N_2O_4$ 404.17 g/mol 125(2) K 0.71073 Å triclinic P1 a = 9.4174(4) Å alpha = 107.8320(10)° b = 10.2417(2) Å beta = 90.81° c = 13.5578(4) Å gamma = $93.4290(10)^{\circ}$ 1241.88(8) Å³, 2 1.290 Mg/m^3 0.086 mm^{-1} 512 0.20 x 0.10 x 0.10 mm 1.58 to 32.69° $-14 \le h \le 14$, $-14 \le k \le 15$, $-20 \le l \le 20$ 21718 $8503 (R_{int} = 0.0262)$ 93.0% **EMPIRICAL** 0.9915 and 0.9830 Full-matrix least-squares on F² 8053 / 0 / 325 1.031 R1 = 0.0476, wR2 = 0.1220R1 = 0.0673, wR2 = 0.13410.460 and -0.374 $e^{A^{-3}}$

ORTEP of compound 14

ORTEP of compound 14