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S1 Geometrical parameters of VS models
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Model 1 2 3 4 5 6 7

a

(1)
r 6.0 2.532 1.966 1.566 1.466 1.266 1.0
z 1.5 1.5 1.5 0.5015 0.5015 3.7515 3.7515

310
(1)

r 6.0 2.492 1.946 1.546 1.446 1.246 0.98
z 1.5 1.5 1.5 0.602 0.602 4.602 4.602

a

(2)
r 6.0 2.532 1.966 1.566 1.466 1.266 1.0
+z 1.5 1.5 1.5 0.10225 0.10225 3.7515 3.7515
−z 1.5 1.5 1.5 0.90075 0.90075 3.7515 3.7515

310
(2)

r 6.0 2.492 1.946 1.546 1.446 1.246 0.98
+z 1.5 1.5 1.5 0.253 0.253 4.602 4.602
−z 1.5 1.5 1.5 0.951 0.951 4.602 4.602

a

(3)
r 6.0 2.532 1.966 1.566 1.466 1.266 1.0
z 1.5 1.5 1.5 0.90075 0.90075 4.15075 4.15075

310
(3)

r 6.0 2.492 1.946 1.546 1.446 1.246 0.98
z 1.5 1.5 1.5 0.951 0.951 4.951 4.951

a

(4)
r 6.0 2.532 1.966 1.566 1.466 1.266 1.0
+z 1.5 1.5 1.5 0.5015 0.5015 4.15075 4.15075
−z 1.5 1.5 1.5 1.3 1.3 4.15075 4.15075

310
(4)

r 6.0 2.492 1.946 1.546 1.446 1.246 0.98
+z 1.5 1.5 1.5 0.602 0.602 4.951 4.951
−z 1.5 1.5 1.5 1.3 1.3 4.951 4.951

Table S2: Geometrical parameters of models. (a) Mapping from geometrical
positions in Figure 1 to indexed geometrical parameters. Inflection points and
lengths are varied among different models, depending on countercharge posi-
tions, helix conformation and gating canal size. Positions in r (radial) and z
(axial) coordinates are marked by a colored point and an associated number.
All corners are rounded with curvature radius of 0.15 nm. Points 1,2,3,4, and 6
define the profile of the lipid and protein dielectrics, from the outermost end of
the lipid domain (1) to the face of the S4 cylinder (6). Point 5 marks the radial
position assigned to countercharges, point 7 the radial position of S4 charges.
(b) Coordinates (in nm) of the points defining membrane and protein metrics.
For models with symmetrical gating canal, r and z define both the extracellular
and intracellular surfaces. For models with an asymmetric gating canal, +z
values are used for the extracellular surface and −z for the intracellular surface.
These metrics apply regardless of electrode positioning. The numbers in paren-
theses listed in the first column refer to the variants of gating canal geometry
used in the models for Fig. 6.
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S2 Charge distributions of VS models

The sliding helix in our VS models is a microscopic voltage sensor, thus subject
to thermal agitation. Its behavior must be described in statistical terms. In this
section, stochastic VS behavior is visualized for several models presented in the
paper, both as figures for a fixed applied voltage (-100 mV; Figs. S3–S6) and in
animations with voltage increasing uniformly over time from -100 to +100 mV
(Animations S8–S11, respectively).

The figures show two stochastic aspects of VS behavior: (1) the mean po-
sitions of the S4 charges (marked by blue balls), and (2) the charge density
distribution of S4 charge (represented by a blue cloud with a color intensity
proportional to the charge density there). A high density of color marks the
locations where the S4 charges dwell frequently, as opposed to their mean posi-
tions.

The mean position for each charge is computed from Eq. 8 using the positions
rk for the charge qk as the random variable X, using the partition function with
translational and rotational degrees of freedom. Since the helix behaves as a
solid body, the helix position r fixes the positions rk for the charges qk. That
relationship allows us to define the partition function for the positions rk in
terms of the partition function for the helix position r, as well as the energy
functions for rk in terms of the energy function for the helix position.

In other words, by applying Eq. 8 to a model with X = rk, the mean position
〈rk〉 for any charge can be calculated given the probability of configuration ij
(Pij , Eqs. 7 & 6):

〈rk〉 =
∑
i,j

rk,ijPij =
1

Q
∑
i,j

rk,ije
−∆Wij/kBT , (S1)

where ∆Wij is the work to construct configuration ij from a reference configu-
ration, and rk,ij is the position of charge k in configuration ij.

Likewise, the distribution of charge can be computed by applying the par-
tition and energy functions in terms of the position of charges rk. The charge
density z̄(r) is then the sum over all charges of the probability of each charge
being located at r, multiplied by its valency, and normalized:

z̄(r) =

∑
i,j,k:

rk,ij≈r

Pijzk

∑
i,j,k

Pijzk
, (S2)

where rk,ij ≈ r means that charge k in configuration ij is collocated with r for
graphical purposes. The color representations for the animations are propor-
tional to z̄(r) normalized to the highest charge density at that frame’s potential.
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Figure S3: Standard α-helical model: Animation S8 Position and distribution of
charges for model α (1) in Table S2b with εp = 4. Red symbols represent fixed
negative countercharges, blue symbols represent the mean position of +1/3 e0

on S4 arginines, and blue shading represents the relative probability of positive
charge at a given position.

S3 Charge-voltage relations based on hypothesized en-
ergy maps

We derive analytical charge-voltage relations for two hypothesized maps of
voltage-independent configurational energy W1: (1) a map that restricts the
S4 segment to exactly two possible positions associated with displaced charges
Q1 and Q2 and equal energies (W1 = 0); and (2) a map that restricts the S4
segment to a range of positions with displaced charges between Q1 and Q2 and
provides a uniform level of energy within that range (W1 = 0).

When the voltage Vm is applied at the bath electrodes, the total configura-
tional energy for any possible S4 position with displaced charge Q is the external
work W2 as defined by Eq. 5. Because the displaced charge determines the con-
figurational energy, no further specification (e.g. of S4 positions) is needed to
fully describe the relation between displaced charge and applied voltage in these
systems.

Bistable system

For the bistable system (1), the partition function is the sum

Q = exp

(
Q1Vm

kBT

)
+ exp

(
Q2Vm

kBT

)
. (S3)

The expected charge-voltage relation is

〈Q〉 =
Q1 exp

(
Q1Vm

kBT

)
+Q2 exp

(
Q2Vm

kBT

)
Q . (S4)
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Figure S4: Standard 310-helical model: Animation S9 Position and distribution
of charges for model 310 (1) in Table S2b with εp = 4. See the description of
Fig. S3 for further details.

Figure S5: α-helical model with εp = 16: Animation S10 Position and distribu-
tion of charges for model α (1) in Table S2b with εp = 16. See the description
of Fig. S3 for further details. This is the model used in Fig. 5.
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Figure S6: α-helical model with asymmetric gating canal: Animation S11 Posi-
tion and distribution of charges for model α (4) in Table S2b with εp = 4. See
the description of Fig. S3 for further details. This is the model used in Fig. 6,
outline 4.

For the applied voltage Vm = 0, 〈Q〉 = (Q1 + Q2)/2, and the slope at this
midpoint of the charge-voltage relation is

∂〈Q〉
∂Vm

=
(Q2 −Q1)

2

4kBT
. (S5)

The asymptotic displaced charges Q1 and Q2 are approached exponentially as
the applied voltage of the respective polarity is made exceedingly large.

Continuous system

For the continuous system (2), the partition function is the integral

Q =
1

Q2 −Q1

∫ Q2

Q1

exp

(
QVm

kBT

)
dQ. (S6)

The expected charge-voltage relation is

〈Q〉 =

1
Q2−Q1

∫ Q2

Q1
Q exp

(
QVm

kBT

)
dQ

Q , (S7)

Executing the integrations yields

〈Q〉 =
Q2 exp

(
Q2Vm

kBT

)
−Q1 exp

(
Q1Vm

kBT

)
exp

(
Q2Vm

kBT

)
− exp

(
Q1Vm

kBT

) − kBT

Vm
. (S8)

Using power series expansion of the exponentials in the vicinity of Vm ≈ 0, one
finds for the charge Q(Vm = 0) = (Q2 − Q1)/2, and for the derivative with
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Figure S7: Analytical charge-voltage relations for the 2-state and continuous S4
models. Extreme charge displacements are set to Q1 = −1.5e0 and Q2 = +1.5e0

for both models.

respect to applied voltage at this point

∂〈Q〉
∂Vm

=
(Q2 −Q1)

2

12kBT
. (S9)

This derivative is exactly 1/3 that of the bistable system (Eq. S5).

The difference between the charge-voltage relation and the asymptotic charges
vanishes hyperbolically with exceedingly large voltage because of the term−kBT/Vm
in equation S8, in contrast with the exponential approach predicted for the
bistable system (Eq. S4).

Comparison of the analytical models

The relations between displaced charge and voltage (Eqs. S4 and S8) are shown
for a total charge displacement of 3 elementary charges in Fig. S7. Note the
differences in midpoint slopes and in asymptotic behaviors.
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