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Abstract With the increasing successful stories of 

decontamination, different strategies for metal remediation 

are gaining importance and popularization in developing 

countries. Rhizoremediation, is one such promising option 

that harnesses the impressive capabilities of microorgan-

isms associated with roots to degrade organic pollutants 

and transform toxic metals. Since it is a plant based in-situ 

phytorestoration technique it is proven to be economical, 

effi cient and easy to implement under fi eld conditions. 

Plants grown in metal contaminated sites harbor unique 

metal tolerant and resistant microbial communities in their 

rhizosphere. These rhizo-microfl ora secrete plant growth 

promoting substances, siderophores, phytochelators to 

alleviate metal toxicity, enhance the bioavailability of 

metals (phytoremediation) and complexation of metals 

(phytostabilisation). Selection of right bacteria/consortia 

and inoculation to seed/ roots of suitable plant species will 

widen the perspectives of rhizoremediation. 

Keywords Bioremediation · Rhizosphere · Rhizoreme-

diation · Phytoremediation · Hyperaccumulator · Metals · 

Microbial diversity

Introduction

Worldwide contamination of soils with metals has posed a 

great threat to the human health as most of them are proven 

to be carcinogenic even at slightly higher concentrations. 

Metal contamination in India [1-3] is mainly due to indus-

trial activities and it is estimated that about $3 billion are 

needed to remediate the metal contaminated sites alone in 

USA [4].

For the past few decades, three important strategies are 

used to treat contaminated soils i.e., in-situ immobiliza-

tion of toxicants, ex-situ soil excavation and treatment and 

degradation/ detoxifi cation of organic/ inorganic pollutants 

by physical, chemical or biological means. With the wide 

range of catabolic reactions mediated by microbes and its 

enzymes, bioremediation techniques till date are the most 

economical and ecofriendly strategies for organic and inor-

ganic decontamination. 

Rhizoremediation is an elegant form of bioremediation 

that seeks to harness light energy via plants to biostimu-

late pollutant degradation by the indigenous soil microbial 

community [5]. Microorganisms living in the rhizosphere 

on plant-derived substrates are better able to degrade or 

transform xenobiotics than are those in the bulk soil. This 

increased ability may be associated with the greater number 

of microorganisms or with the availability of growth-sup-

porting substrates for co-metabolism. 

The plant root system aerates the soil, distributes the 

rhizobacteria through soil and penetrates impermeable soil 
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layers, solubilising the pollutants in soil-water and making 

it bioavailable to the plant and microbes. Researchers have 

exploited this symbiotic relationship for rhizoremediation of 

hazardous and xenobiotic compounds like PCBs [6], PAHs 

[7], TCE [8] and metal uptake [9,10]. As reviewed [11,12], 

rhizoremediation can be successfully used for restoration of 

contaminated sites by choosing right type of plant cultivar 

with right rhizobacteria or by inoculating effi cient rhizobac-

terial strains on plant seeds/ roots. Also, the effi cient rhizo-

bacteria enabling hyperaccumulation could be potentially 

developed into an inoculum for commercial phytomining 

[13,14]. Various grasses and leguminous crops were used 

for rhizoremediation because of the profound root biomass 

[7]. The establishment of crop cover also improves the soil 

physical and chemical properties of contaminated soil and 

increase the contact microbes and contaminants [15]. 

Extensive literature exists on the role of rhizospheric 

bacteria on degradation of organic pollutants and also on 

benefi cial rhizobacterial strains involved in biocontrol 

of soil borne pathogens [16] and biofertilisation [17]. 

However, science behind rhizosphere-microbes assisted 

metal transformations in soils needs to be explored further 

for implementation of this technique on a massive scale. 

This review highlights (i) the rhizosphere-microbial di-

versity of hyperaccumulators ii) microbes used in metal 

rhizoremediation and iii) recent advances in implementa-

tion of rhizoremediation techniques for metal removal from 

soils. 

Rhizosphere microbial diversity of plants growing in 

metal rich soils

A variety of microbial forms can be found growing in rhizo-

sphere micro-habitats. The microbial population in the rhi-

zosphere depends on the composition of the root exudates, 

type of plant species, root type, age of the plant and also soil 

type. It is well documented that the rhizosphere is domi-

nated with gram-negative bacteria, Pseudomonads. Rhi-

zosphere bacteria associated with plants growing in metal 

contaminated soils harbor microbial populations that are 

i) resistant to metal ii) sequester/ bioaccumulate/ biosorb 

metals into cells and/ or iii) able to transform toxic metal 

species to non-toxic species by enzymes and exopolysac-

charides produced.

It is evident that because of increased nutrients in rhizo-

sphere the population of microorganisms in rhizosphere is 

several folds greater than the bulk soils as well as the over-

all microbial activity in rhizosphere. However, elevated 

concentrations of metals can inhibit overall population 

[18], microbial activities [19,20], microbial biomass [21], 

specifi c populations of bacteria or fungi [22] and cause a 

permanent shift in microbial community structure [23]. 

The inhibition is mostly signifi cant in freshly contaminated 

soils. With time, a sequential change occurs in the diversity 

and composition of microbial communities and only the 

tolerant and resistant microbes thrive both in bulk as well as 

rhizosphere soils.

Table 1 Rhizospheric microbial communities associated with plants grown in metal rich soils

Plants Microbe/ Microbial communities and their characteristics Soil nature Reference

Thlaspi goesingense Holophaga/ Acidobacterium division and α-

proteobacteria, Methylobacterium mesophilicum, 

Sphingomonas

Ni rich serpentine soils 24

T. caerulescens Ni resistant bacteria predominant in rhizosphere than 

bulk soils

25

Alyssum murale Ni resistant, siderophore and acid producing bacteria 

more in rhizosphere than bulk soils

Sphingomonas macrogoltabidus, Microbacterium 

liquefaciens,M. arabinogalactanolyticum

26

27

A. bertolonii Gram positive α-proteobacteria 28

Rinorea bengalensis

Dichapelatum gelonioides ssp 

andamanicum

Pseudomonas, Bacillus, Cupriavidus sp. 10

Agrostis tenuis Arthrobacter, Ochrobactrum, Bacillus, Serratia sp and 

AM fungi - Acaulospora, Gigaspora

As - contaminated 

cattle dip sites

29

Pteris vittata Pseudomonads As - contaminated soils 30

Phragmites sp. Cu tolerant, exopolymer producing bacterial 

communities, predominantly, Bacillus

Cu - contaminated 

soils (Near Cu mines)

31
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Heavy metal resistant rhizosphere bacteria are reported 

in soils rich in heavy metals and an unique microfl ora pre-

vail in rhizosphere of hyperaccumulators grown in serpen-

tine as well as contaminated soils (Table 1). The bacterial 

communities are predominant compared to fungi in these 

plants. The community structure of rhizosphere bacteria of 

T.goesingense identifi ed by 16S rRNA sequence analysis 

showed that a higher percentage of bacteria belonging to 

Holophaga/ Acidobacterium division and α-proteobac-

teria were found. Rhizosphere associated endophytes 

belong mainly to genera Methylobacterium, resembling to 

M.mesophilicum. Sphingomonas is also predominant. All 

the isolates were resistant to Ni concentrations (5 - 12mM). 

All the bacteria were able to produce siderophores [24]. 

Similarly, phenotypic characterization of microbial popu-

lations of rhizosphere of A.murale reveal that Ni resistant, 

siderophore and acid producing bacteria were predominant 

in the rhizosphere soil compared to bulk soil [26]. The ge-

netic diversity of the rhizosphere in A.bertolonii studied us-

ing T-RFLP analyses reveal that they belong mainly to gram 

positive and α- proteobacteria representatives [28]. The Ni 

hyperaccumulator growing in serpentine soils of India colo-

nises Ni tolerant bacterial isolates belonging to Pseudomo-

nas, Bacillus and Cupriavidus. Among this, Cupriavidus 

pauculus KPS 201(MTCC 6280) showed highest degree of 

Ni tolerance and maximum Ni uptake by the plants [10].

In metal contaminated soils, the rhizosphere microbes 

aid the uptake. In Agrostis tenuis, increased uptake was fa-

cilitated by rhizosphere microbes grown in As contaminated 

soil near cattle dip sites. The kikuyu grass and rainbow fern 

growing in this site had mixed infections of roots by Acau-

lospora and Gigaspora. The bacteria belong to the genus 

Arthrobacter and Ochrobactrum [29]. The Phragmites sp. 

grown in Cu contaminated soils has Cu-resistant bacterial 

communities in rhizosphere. Compared to bulk soils, the 

bacteria in rhizosphere was prompted by Cu stimuli and 

produce exopolymers in large quantities that helps in de-

toxifi cation of Cu to both bacteria and plants [31].

The changes in concentration of the same metal (low/ 

high) also changed the microbial diversity and tolerance 

level in rhizobacteria of Brassica juncea [32] and Diplach-

ne fusca [18]. Multiple metal resistance in rhizobacteria 

seems to be the rule. Bacteria colonizing Alyssum sp. toler-

ate Ni, Co, Cu. Strains showing multiple metal tolerance 

are more predominant than mono-tolerance [18]. About 107 

bacterial strains were checked for multimetal tolerance and 

all of them can tolerate more than six metals. In general 

rhizospheric bacteria are metal tolerant and/or resistant to 

a variety of metals. Most of them possess certain mecha-

nisms to cope up with very high concentration of metals. 

These special traits of rhizospheric microbes are used in 

rhizoremediation techniques in conjunction with right plant 

species. 

Rhizobacteria in metal bioremediation 

For effective bioremediation of metal contaminated soils, 

several organisms have been utilized isolated from varied 

environments [33,34]. Microbial isolates from rhizosphere 

can also be effectively harnessed for bioremediation of con-

taminated environments. All the PGPR strains can be used 

for bioremediation of metals. 

Plant growth-promoting rhizobacteria include a diverse 

group of free-living soil bacteria that can improve host plant 

growth and development in heavy metal contaminated soils 

by mitigating toxic effects of heavy metals on the plants 

[35]. A list of PGPR associated with plants grown in metal 

contaminated soils like Azotobacter chroococcum HKN-5, 

Bacillus megaterium HKP-1, Bacillus mucilaginosus HKK-

1, Bacillus subtilis SJ-101, Brevundimonas sp. KR013, 

Pseudomonas fl uorescens CR3, Rhizobium leguminosarum 

bv. trifolii NZP561, Kluyvera ascorbata SUD165 [33] are 

used in bioremediation. The rhizobacteria associated with 

hyperaccumulators, Bacillus subtilis, Bacillus pumilus, 

Pseudomonas pseudoalcaligenes and Brevibacterium halo-

tolerans are also widely used in bio- and rhizo-remediation 

of multimetal contaminated sites [36]. 

Nickel tolerant rhizosphere bacterial isolates belong-

ing to genus Pseudomonas, Bacillus and Cupriavidus 

from Rinorea bengalensis and Dichapetalum gelonioides 

ssp. Andamanicum were capable of accumulating nickel 

(209.5–224.0 μM Ni g [−1] protein) from aqueous solution. 

These isolates are also capable of tolerating high concentra-

tion of Ni and possess nickel uptake potential too. Hence, 

can be effectively harnessed for bioremediation of Ni con-

taminates sites [10]. Compared to a single strain, group of 

bacterial cultures can be very effective. Chen and Cutright 

[9] utilized a rhizobial microbial consortium for treating an 

aqueous solution containing 600mg/L of Cd, Cr and Ni. The 

consortium was resistant to metal toxicity and facilitated re-

duction in aqueous metal concentration with selectivity of 

Cr > Cd >Ni.

Rhizoremediation of metals

The diverse microbial communities in rhizosphere, the 

interactions of these microbes among themselves and with 

plants determine the extent of rhizoremediation. The rhizo-

bacteria is used or manipulated with three main objectives 

for remediation of metal contaminated soils a) hyperac-

cumulation of metals in plants b) reducing the uptake of 
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metals and c) in-situ stabilization of the metals as organo-

complexes.

Increased metal uptake in hyperaccumulators is aided 

by changes in the rhizosphere and rhizobacterial secretions. 

The chemical condition of the rhizosphere differs from 

bulk soil as a consequence of various processes induced 

by plants roots as well as by rhizobacteria [37] (Fig. 1) 

like secretion of organic acids followed by reduction in pH, 

production of siderophores, phytochelains, amino acids and 

ACC deaminase. 

As seen in the Table 2 [38–51], predominantly rhizobac-

teria increased the dissolution of metals like Zn, Ni and Cu 

thereby increasing the dissolution of metal and more uptake 

by plants. Delorme et al [52] reported that soil acidifi cation 

increased the metal ion mobility in T.caerulescens. Simi-

larly, the accumulation of Hg. It was observed that the pH 

in the rhizosphere soil of the Cu accumulating plant species 

(Elsholtzia) was signifi cantly lower than in the bulk soil 

when plants were grown in Cu and other metal contami-

nated soil under fi eld experiment conditions [53].

Pseudomonas maltophilia was shown to reduce the mo-

bile and toxic Cr [6+] to nontoxic and immobile Cr [3+], 

and also to minimize environmental mobility of other toxic 

ions (Hg, Pb, Cd) [54]. Chromium-resistant pseudomonads, 

isolated from paint industry effl uents, were able to stimulate 

seed germination and growth of Triticum aestivum in the 

presence of potassium bichromate [55]. In this case, the 

bacterial enhancement of seedling growth was associated 

with reduced chromium uptake. 

Abou-Shanab et al [13] studied the effect of rhizobacte-

ria that facilitated the release of Ni and more accumulation 

in A.murale. In B. napus, the inoculation of Cd resistant 

rhizobacteria increases the accumulation of Cd [47]. 

Rhizobacteria produce siderophores that have an impor-

tant role in sequestering metals [56 ]and has more affi nity 

to plants. Microbial siderophores are used as metal chelat-

ing agents that regulate the availability of iron in plant rhi-

zosphere. This helps the plants to alleviate the toxicity of 

metals. Since As and P are chemical analogues, increased 

As plant uptake was recorded in P.vittata [30]. Under metal 

stress conditions, phytoharmones (IAA and ethylene) are 

released and results in increased uptake of metal ions [57]. 

Some PGPR contain the enzyme ACC deaminase that helps 

in reducing the impact of ethylene on root growth [58]. 

Thlaspi caerulescens has a remarkable ability to hyper-

accumulate Zn from soils containing mostly nonlabile Zn. 

The addition of bacteria to surface-sterilized seeds of T. 

caerulescens sown in autoclaved soil increased the Zn con-

centration in shoots 2-fold as compared to axenic controls; 

the total accumulation of Zn was enhanced 4-fold [42,64]. 

Heavy metals stimulate the production of siderophores eg., 

under cadmium stress the synthesis of phytoharmones are 

triggered that ended up in higher uptake of metals [59]. 

Abou-Shanab et al [18 ]investigated the correlation between 

Fig. 1 
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metal resistance and metal mobilization abilities of rhizo-

bacteria under heavy metals stress. The highest incidence 

of the biochemical activity of isolates and metal resistance 

was recorded for: phosphate solubilizers with Cr, Zn and 

Pb (92.5%, 82.2% and 68.2%), respectively followed by 

siderophore producers and acid formers. This implies that 

phosphate solubilization is not only the mechanism adopted 

by bacteria towards metals in soil. 

The effect of adding K. ascorbata SUD165, a plant 

growth-promoting bacterium, to canola or tomato seeds 

before the seeds germinate, was examined in the pres-

ence of inhibitory concentrations of Ni2+. Addition of this 

bacterial strain signifi cantly decreased the toxicity of the 

added nickel [39]. Addition of a bacterial strain P. maltoph-

ila was shown to reduce the mobile and toxic Cr(VI) to 

immobile and nontoxic Cr(III) thereby minimizing the 

mobility of metal ions [20]. Results also reveal that in long-

term chrome contaminated sites, the complete microbial 

reduction of Cr(VI) is challenging [60]. 

The association of mycorrhiza with brake fern, Pteris 

vittata (hyperaccumulator for As) is well studied. Al-Agely 

et al [41 ]studied the effect of increasing levels of As and 

P on the fern infected with mycorrhiza. The mycorrhiza 

tolerated elevated concentrations of As as well as increased 

Table 2 Rhizosphere-microbes aided metal remediation

Metal Associated plant

Microbial action in rhizosphere aiding 

metal uptake Changes in plants Reference

Zn Thlaspi 

caerulescens

Bacterially mediated dissolution of Zn from 

non labile phase

4 fold more uptake compared to 

anexic control

38

Ni Alyssum murale Bacterial Ni solubilisation Increased Ni uptake into the shoot 

(17-32%) 

27

Brassica campestris 

Lycopersicon 

esculentum

Kluyvera ascorbata SUD165

Siderophore production and ACC 

deaminase activity

Reduced uptake and reduces toxicity 39

Se Brassica juncea L Bacteria volatilizes Se into nontoxic forms, 

such as dimethylselenide

35% of plant Se volatilization and 

70% of plant tissue accumulation

40

As Pteris vittata Mycorrhizae increased the amount of P 

transporters at hyphae level for As uptake

Phenolic defense system (formation of thiol 

like glutatuhione)

More accumulation and increased 

shoot biomass

41,42

43

Mycorrhization Glomus mosseae or 

Gigaspora margarita 

Increased pinnae dry weight, leaf 

area and reduced root concentration 

44

Cu Elsholtzia splendens Dissolution of Cu by addition of 

rhizobacterial strain MS12 and ampicillin 

0.1mg/g 

2.2-fold and 2.5-fold increase in Cu 

accumulation in the shoots and roots 

45

Cd Trifolium repens Coinoculation of Brevibacillus sp. and AM 

fungus

Increased Cd uptake (37%) 46

Brassica napus Cadmium resistant bacterial strains 

inoculated to plants. (Indole acetic acid 

as auxin produced by the isolates for 

tolerance)

Increased Cd content (16-74% 47

Arabidopsis sinicus Inoculation of recombinant Mesorhizobium  

huakuii subsp. rengei B3

Increased Cd accumulation in 

nodules (1.5 fold)

48

Multi-metals Zea mays Inoculation of Brevibacterium haloterans Pb (0.2 g kg−1), Zn (4 g kg−1) and 

Cu (2 g kg−1) were accumulated in 

shoots 

36

Mycorrhizae bound metals to organic 

matter and increases uptake

Cu (+5%), Zn (+23%) and Pb (+3%) 49

Helianthus annus Inoculation of Engineered Rhizobacteria 

(Pseudomonas putida 06909 with metal 

binding peptide EC20) 

Decrease in Cd phytotoxicity; 40% 

increase in Cd accumulation in the 

plant root

50

TCE and 

heavy metals

EC20, was introduced into rhizobacteria 

Pseudomonas strain Pb2-1 and Rhizobium 

strain10320D

Sixfold higher Cd accumulation 

than non-engineered strains in the 

presence of 16 mM CdCl
2
.

51



Indian J. Microbiol. (March 2008) 48:80–88 85

 

123

dry biomass of the fern. Leung et al [61] also reported that 

the addition of rhizofungi enhanced the uptake and accu-

mulation of As in P. vittata. Under the condition of 100 mg 

As per kg soil, non-colonized plants accumulated 60.4 mg 

As kg−1 while plants colonized by arbuscular mycorrhizal 

fungi (AMF) isolated from an As mine accumulated 88.1 g 

As kg−1 and also enhanced plant growth. On the other 

hand, Trotta et al [44] found that in the same plant spe-

cies, P. vittata, rhizofungi increased plant growth only in 

the above ground parts but reduced root As concentration 

without any effect on frond concentration, therefore result-

ing in a larger As translocation factor. Moreover, in U and 

As-contaminated soil, Chen et al [62] found that rhizofungi 

depressed growth of P. vittata particularly at the early stages 

and had no effect on As concentration in this plant. These 

results indicated that the effects of rhizofungi on As uptake 

is inconsistent even though the same plant species was 

used.

The presence of mycorrhiza likely increased the amount 

of P transporters at hyphae level. A phenolic defense mech-

anism is also reported wherein the formation of thiol like 

glutothione is induced as the concentration of As increased. 

This alleviates the toxicity of plants [43]. More research 

is needed to investigate further the low molecular weight 

thiols [42]. Research is also underway to study the genetic 

and functional characters of the rhizosphere microbial com-

munities in P.vittata. An As resistant Pseudomonad has 

been isolated and its role in solubilisation of phytic acid is 

studied further [30]. 

Chelate-assisted phytoremediation has been proposed as 

an effective tool for the extraction of heavy metals from soil 

by plants. Chen et al [63] reported that chelate addition fa-

cilitated phytoremediation of soil Cu without inhibiting the 

microbial communities. Cocultivation of crops also enhanc-

es metal uptake. Rhizospheric diversity was considerably 

reduced in the rhizospheres of monocultures of L.perenne 

and T. repens compared to the diversity in bulk soil [64]. 

The greater diversity of plant species may be responsible 

in part for the greater bacterial diversity in the bulk soils. 

The hyperaccumulator plants are also grown along with 

non-hyperaccumulators to enhance the heavy metal uptake 

by intermingling the roots and hence, the colonization of 

effi cient rhizobacteria. 

Engineered rhizobacteria for metal uptake

Biosorption using microbially produced synthetic phyto-

chelatins as been shown to be a promising technique for 

ameliorating heavy-metal contamination. Bacteria such as 

Escherichia coli and Moraxella sp. expressing EC20 (with 

20 cysteines) on the cell surface or intracellularly have been 

shown to accumulate up to 25-fold more cadmium [65 ]or 

mercury [66 ]than the wild-type strain. 

Recombinant Mesorhizobium huakii by incorporating 

the gene (phytochelatinsynthase) from Arabidopsis thali-

ana into M. sub sp rengei B3 increased 1.5 fold more Cd 

accumulation in Astralagus sinicus [48].

Combining the advantages of microbe plant symbiosis 

within the plant rhizosphere is an effective cleanup tech-

nology. Inoculation of sunfl ower roots with the engineered 

rhizobacterium (metal-binding peptide (EC20) in a rhizo-

bacterium, Pseudomonas putida 06909) resulted in marked 

decrease in Cd phytotoxicity and increase in Cd accumula-

tion [49]. 

However, one major obstacle for utilizing these engi-

neered microbes is sustaining the recombinant bacteria 

population in soil, with various environmental conditions 

and competition from native bacterial populations.

Challenges

When evaluating the effect of rhizobacteria on remediation 

of contaminated soils, it is very certain that many bacteria 

can eventually fi nd a use in bioremediation. Treating the 

seeds with rhizobacteria has opened up new avenues in the 

area of rhizoremediation and can contribute to the restora-

tion of polluted sites. However, not many reports exist on 

the utilization of this technique on a massive scale. Few 

more challenges facing the fi eld of rhizoremediation is 

the availability of suitable methods to study in-situ metal 

transformation processes and also molecular approaches. 

Standardised methods were available for organics, not 

many for inorganics. Further, the studies on the selection 

of more rhizobacteria, bacteria-plant combination and 

effective means to sustain and proliferate the rhizobacteria 

in the roots will be helpful to formulate suite of remediation 

strategies. 
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