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The purpose of this study was to determine whether 
intensity windowing (IW) improves detection of simu- 
lated masses in dense mammograms. Simulated 
masses were embedded in dense mammograms digi- 
tized at 50 microns/pixel, 12 bits deep. Images were 
printed with no windowing applied and with nine 
window width and level combinations applied. A 
simulated mass was embedded in a realistic back- 
ground of dense breast tissue, with the position of the 
mass (against the background) varied. The key vari- 
ables involved in each trial included the position of the 
mass, the contrast levels and the IW setting applied to 
the image. Combining the 10 image processing condi- 
tions, 4 contrast levels, and 4 quadrant positions gave 
160 combinations. The trials were constructed by 
pairing 160 combinations of key variables with 160 
backgrounds. The entire experiment consisted of 800 
trials. Twenty observers were asked to detect the 
quadrant of the image into which the mass was 
Iocated. There was a statistically significant improve- 
ment in detection performance for masses when the 
window width was set at 1024 with a level of 3328. IW 
should be tested in the clinic to determine whether 
mass detection performance in real mammograms is 
improved. 
Copyright �9 1997 by W.B. Saunders Company 
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E FFECTIVE IMAGE display allows for an 
improvement in the clarity of structural de- 

tails. Mammography, especially in patients with 
dense breasts, is a low-contrast examination that 
might benefit from increased contrast between 
malignant tissue and normal dense tissue. Image 
processing may allow for improved visualization of 
details within medical images. ~ Our overall aim is 
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to improve the accuracy of mammography with 
image processing because 10% of palpable breast 
cancers are not visible with standard mammo- 
graphic techniques. 2 

Contrast enhancement methods accentuate or 
emphasize particular objects or structures in an 
image by manipulating the gray levels in the 
display. This is done by imposing a predetermined 
transformation that amplifies the contrast between 
structures and effectively "resamples" the recorded 
intensities to enhance the properties of the dis- 
played image. 3 These methods are not designed to 
increase or supplement the inherent structural infor- 
mation in the image, but simply improve the 
contrast and theoretically enhance particular charac- 
teristics. 4 Intensity windowing (IW) is an image 
processing technique that involves the determina- 
tion of new pixel intensities by a linear transforma- 
tion that maps a selected band of pixel values onto 
the available gray level range of the display sys- 
tem. 4 

Many investigators have studied the application 
of digital image processing techniques to mammog- 
raphy. McSweeney et al tried to enhance the 
visibility of calcifications by using edge detection 
for small objects, but never reported any clinical 
results. 5 Smathers et al showed that intensity band- 
filtering could increase the visibility of small 
objects compared to images without such filtering. 6 
Chan et al used unsharp masking (an edge- 
sharpening technique used in photography for 
many years) to remove image noise for computer- 
ized detection of calcification clusters. 7 In another 
study, Chan et al noted that while these techniques 
improved detection, the improvements may have 
been greater if the observers had been trained to 
make diagnoses from the processed mammograms 
rather than the unprocessed (normal) mammo- 
gratas. 8 Hale et al have applied nonspecific contrast 
and brightness adjustment through Adobe Photo- 
shop (Adobe Systems Inc, Mountain View, CA) to 
digitized mammograms and have found improved 
performance by radiologists in determining the 
likelihood of malignancy of mammographically 
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apparent lesions. 9 Yin et al showed that nonlinear 
bilateral subtraction is useful in the computer- 
detection of mammographic masses. ~0., 

Previous work at the University of North Caro- 
lina has explored the use of intensity windowing 
(IW) and the Adaptive Histogram Equalization 
(AHE) family of algorithms in mammography and 
computed tomography. '2-~4 We have previously 
described a laboratory-based method for testing the 
efficacy of an image processing algo¡ in im- 
proving the detection of masses in dense mammo- 
graphic backgrounds. '5 With that method, upon 
which our current work is based, radiologists and 
non-radiologists exhibit.similar trends in detection 
performance. While non-radiologists did not per- 
f o r m a s  well as radiologists overall, the two 
populations displayed parallel increases and de- 
creases in performance attributable to image pro- 
cessing. 

The experiments described in this article were 
performed to determine whether IW could improve 
the detection of simulated masses in dense mammo- 
grams in a laboratory setting. Although the scope of 
this article is limited to the evaluation of observer 
performance using our established experimental 
paradigm, it may be interesting for follow-up work 
to evaluate these results with respect to measures 
proposed by other authors, such as the conspicuity 
measure proposed by Revesz et al and Revesz and 
Kundel.16-J8 

MATERIALS AND METHODS 
The experimental paradigm reported here is based on the 

model we have previously described and allows for the labora- 
tory testing of a range of parameter values (in this case, window 
width and level).~5 The experimental subject is shown a series of 
test images that consist of an area of a dense mammogram with a 
simulated mass embedded in the image in one of its four 
quadrants. The observer's task is to determine in which quadrant 
the mass is located. The test images are displayed in both the 
processed and unprocessed format, and the contrast of the object 
is varied, from quite easy to detect to impossible to detect. 

A computer program randomly selected ore of 40 background 
images and rotated that background to one of four orientations. 
The 40 background images of 256 • 256 pixels each were 
extracted from actual clinical film screen mammograms digi- 
tized using a Lumisys digitizer (Lumisys Inc, Sunnyvale, CA) 
with a 50 micron sample size with 12 bits (4096 values) of 
density data per sample. The images contained relatively dense 
breast parenchyma. These were determined to be dense by a 
radiologist expert in breast imaging. Only areas that contained 
relatively uniformly dense tissue were included, with adjacent 
fatty areas specifically excluded. These areas were selected 
because they are most likely to hide soft tissue masses in the 
clinical setting. They were known to be normal by virtue of at 

least three years of normal clinical and mammographic follow- 
up. They were selected by a breast imaging radiologist from 
digitized film screen craniocaudal or mediolateral oblique 
mammograms. Figure 1 shows one of the backgrounds. The 
density of this background as displayed in this figure is typical 
of those used in the experiments. 

These 40 images and four orientations provided 160 different 
dense backgrounds. Next, the program added a phantom feature 
(a mass) into the background. The image was processed with IW 
to yield the final stimulus. 

Mammographic masses were simulated by blurring (through 
convolution with a gaussian kernel with a standard deviation of 
2.0 pixels) a disk that is approximately 5 mm in diameter when 
printed on film (1.51 degree visual angle at a 38 cm viewing 
distance). The masses were added at four fixed contrasts. The 
four contrasts added were, in digitized density units, 20, 40, 80, 
and 160 digital driving levels (DDLs). Although contrast is 
commonly defined asa  change in luminance with respeet to the 
background luminance, we used only the change in luminance in 
this experiment because the change was independent of the 
background luminance. This is because contrast was represented 
in log luminance (ie, the DDLs corresponded to opfical density), 
and since all the study backgrounds were in the luminance range 
where Weber's law holds, adding a mass of constant density 
equates to a constant change in contrast, independent of the 
background luminance. DDL's do n o t  correspond directly to just 
noticeable differences (JNDs). In fact, they correspond to 
fractions of JNDs for the case of the display system used in these 
experiments. 

Ahhough the simulated structures were not entirely realistic, 
they did, however, possess the same scale and spatial character- 
istics of actual masses typically found at mammography. Figure 
2 shows an example of a simulated mass. Figure 3 shows a 
typical background image with the mass added to it. We used 
simulated features instead of real features so that we could have 
precise control over the location, orientatiou, and figure-to- 
background contrast of the masses. 

Fig 1. An example of a dense normal background taken 
from a patient's mammogram and used in the reported 
experiments. 
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determined to generate transfer functions describing the digi- 
tizer and film printer. To maintain a linear relationship between 
the optical densities on the original analog film and the digitally 
printed film, we calculated a standardization funclion that 
provided a linear matching between the digital and printer 
transfer functions. This standardization function was applied 
when printing the films to maintain consistency between the 
original optical densities of the original mammography film and 
those reproduced on the digitally printed films. The fihn printer 
produces films with a constant relationship between an optical 
density (OD) range of 3.35 to 0.13, corresponding to a digital 
input range of 0 to 4095, respectively. 

There were 20 observers for each experiment. These were 
graduate students from the medical school biomedical engineer- 

Fig 2. An example of a simulated mass. The actual size of 
the masses used in the experiments was only 5 mm. 

A 3 x 3 grid of window and level parameters was designed 
based on the resuhs of pilot preference studies dnne with two 
radiologists who specialize in breast imaging. In these pilot 
studies, the two radiologists reviewed dense mammograms with 
real clinical lesions that were judged to be difficult to visualize 
using standard film screen mammography. There were 7 images 
of this type reviewed with 70 combinations of window width 
and level applied. The radiologists scored each combination of 
vatues as showing no change over the standard image, improv- 
ing the visibility of the lesion, or worsening its visibility. 

For experiment 1, the grid spanned all the likely optimal 
settings (windows of 512, 768, 1024 and levels of 3072, 3328, 
3584). Thus, there were a total of 10 IW settings (including the 
default unprocessed image, with a window width of 4096 and 
level of 2048) that were applied throughout expe¡ 1. 

To confirm the results of  the first experiment and to examine 
additional IW settings, expe¡ 2 was performed_ Experi- 
ment 2 alzo included the unprocessed (wide open window 
width) condition and 9 other IW conditions. The combinations 
of parameters evaluated in Experiment 2 were as follows: 
window width of 640 with levels of 3456, 3584 and 3840; 
window width of 1024 with levels of 3200, 3328 and 3584; and 
window width of 1536 with levels of 2944, 3072, and 3328). 

The digital images were printed onto standard 14 • 17 inch 
single emulsion film (3M HNC Laser Film; 3M, St. Paul, MN) 
using a Lumisys Lumicam film printer (Lumisys). Each original 
50 micron pixel was printed at a spot size of 160 microns, which 
produced 4 x 4 centimeter film images, resulting in ah 
enlargement by a factor of 3.2. The background and target are 
magnified together. The radio[ogist observers in the pilot 
experiment reported that the magni¡ did not make the 
backgrounds unrealistic. Forty images were printed per sheet of 
film. The images were randomly ordered into an 8 • 5 grid on 
each sheet of  film. Both the film digitizer and film printer were 
calibrated, and measurements of the relationship between opti- 
cal density on film and digital units on the computer were 

+>+++ 

:Ni 

Fig 3. A dense background with a simulated mass embed- 
ded in it in the right upper quadrant in both figures (arrow). (A) 
is the defautt unprocessed image with window width 4096 
and leve12048. (B) is the same image with window width 1024 
and leve13328. 
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ing department, and computer science department. Performance 
bonus pay was provided. Observers selected the quadrant of the 
image that they thought contained the mass. All images con- 
tained a mass. Observers were told to make their best guess if 
they could not see the simulated mass with certainty. 

Films were displayed in a darkened room on a standard 
mammography lightbox that was masked so that only the grid of 
images on the film was illuminated. Observers could move 
closer to the image and could use a standard mammography 
magnifying glass, as desired. The observers were trained for the 
task through the use of two sets of stimulus image films with 
instructive feedback before actually starting the experiment. 

Both experiments had the same basic design. The order of the 
presentation of the stimuli was counterbalanced so as to 
eliminate any systematic effect of unimportant variables. All 
160 possibte combinations of processing condition (10 IW 
leve]s), contrast level (4 contrgsts) and location of the masses (4 
quadrants) were used in the experiment. The experiment was 
designed to have 5 self-contained blocks, in which all 160 
combinations appeared. The intent was to have the observer see 
ai1 the combinations in each block in case the observer was 
unable to complete the experiment. In fact, all observers did 
complete the experiment. There were 40 backgrounds and 4 
possible rotations of each background, for 160 possible back- 
ground patterns. For each block, a different background pattern 
was assigned uniquely to each of the 160 possible combinations. 
The assignment was different for each block. Each observer 
looked a t a  total of 800 images, which were the 160 possible 
combinations, each superimposed on 5 backgrounds. 

Observers were instructed to take breaks after each block of 
stimuli, and more often if necessary. No time limit was imposed 
on the observers viewing duration of the test images. Overall, 
the experiment took 2 hours for each observer, divided into two 
sessions of approximately 60 minutes each. The two sessions 
were always scheduled on two different days within a week of 
each other. 

Data Analysis Overview 

Classical sensory discrimination theory predicts that because 
contrast values were varied from virtually imperceptible to 

describe the data.- highly apparent, a typical S-shaped curve will " 
At values where the contrast was very low, on average observers 
will guess randomly and get approximately 25% right because 
there are four choices. Where the contrast is very high, they will 
almost always get the correct answer. This relationship between 
logl0 of the contrast of the object relative to the background 
intensity and the percent correct can be described with a probit 
model. This model is typically used to describe the relationship 
between a continuous predictor (log contrast) a n d a  discrete 
variable (percent correct), and assumes that the curve between 
them is described by the cumulative gaussian distribution. 

Probit models were fit for each subject and enhancement 
condition using contrast (DDLs of mass above background) as 
the predictor. The probability that a subject gets a correct answer 
is given by the following equation: 

Pr{correct} = V4 + (1 - ~/4)~ [(x - pij)/~i 

Here i indexes subjects, and j indexes enhancements with x 
representing the log (contrast). Classical psychophysical theory 
and experimental results strongly support the use of the loga¡ 

mic transform, as did our data. In the experiments reported here, 
we used x - logl0 (number of DDLs above background). The 
subscripts in the equation indicate that for each subject a single 
spread parameter was estimated (which pools across all stimuli 
and conditions). Also, for each subject, a separate location 
parameter was estimated for each enhancement condition. With 
10 processing conditions, this implies a total of 10 location 
parameter estimates and one spread parameter for eacb subject. 
Our assumption, that there is a common spread parameter, 
makes sense biologically because it corresponds to linearity of 
the perceptual mapping. It is advantageous to an organista to 
have the same amount of change in stimulus produce a constant 
perceptual response, and that is precisety how the human visual 
system works over a wide range. 

The location parameter Qa) is the mean of the corresponding 
gaussian distribution and the inflection point of the sigmoidal 
probit curve. Processing conditions that improve detection will 
cause this parameter to be smaller, and the curve will shift to the 
left, of equivalently if viewed from the perspective of the same 
contrast value, the curve shifts upward. This occurs because 
lower contrast levels are required to spot the object. When the 
processing of the image makes detection harder, higher contrast 
levels are needed to locate the mass, and the curve shifts to the 
right. The values of o-, the spread parameter, correspond to the 
slope of the line. Large values of o- correspond to steep slopes. 

The probit analysis summarized the relationship between 
contrast and proportion correct for each subject and processing 
condition. To compare the processing conditions and to examine 
the effect of window width and level, further analysis was 
needed. To include both the mean and the location parameter 
from the probit analysis, we defined an overall measure to be 
0ij  = blij + O" i, which corresponds to 88% correct. Because we 
were interested in the improvement offered by IW, we measured 
the "success" of a processing condition by calculating the 
difference between its 0 score and the 0 score for the unproc- 
essed image for each subject. A large positive difference of 0 
score reflects improved performance because ir indicates better 
detection with processed images than with unprocessed images. 

For each experiment, two analyses were performed using this 
outcome measure. To keep an overall experiment-wide type 1 
error tate of .05, a repeated measures analysis of variance 
(ANOVA) was done at the .04 tevel, with a set of nine t-tests at 
the .01/9 level. 

Repeated measures analysis of variance is a technique used to 
analyze data in which many measurements were made on each 
subject. Ir allows one to examine the effect of processing 
conditions and their interactions, while allowing for the depen- 
dence of measurements taken on the same observers. With the 
difference in 0 scores as the outcome, and window width and 
level as the predictors, the repeated measures ANOVA model 
was fitted. 

The model can be thought of as a response surface in three 
dimensions with performance ptotted against window widtb and 
level. A flat surface woutd mean that window width and level 
had no effect on the outcome. The major hypothesis tested in the 
ANOVA is equivalent to asking the question, "Is the response 
surface flat?'" If it is not flat, the step-down hypotheses allow 
one to ask what shape the surface is, whether it is curved in both 
directions (quadratic by quadratic trends), curved in one direc- 
tion and sloped in the other (quadratic by linear trends), of 
sloped in both directions (linear by linear trends). A peak in the 
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surface means that there is one image processing technique that 
is better than any other. Conversely, ir the difference score is 
equal to zero for any intensity windowing setting, it would 
correspond to no difference between the processed image and 
the unprocessed image. That is what the t statistics test. 

RESULTS 

Experiment l 

The repeated measures ANOVA revealed that 
there was a significant interaction between window 
width and level (P = .0001, G-G6 = .8347). To 
examine the nature of this interaction, a series of  
step-down tests was planned. There was a signifi- 
cant interaction between a quadratic trend in win- 
dow width anda  quadratic trend in level (F  = 31.08, 
P = .0001). Because the quadratic by quadratic 
interaction was significant, no further tests were 
examined. A quadratic by quadratic trend means 
that the surface was curved with respect to both 
window width and level, and that the shape of  the 
curve differed for fixed levels of  window width and 
level (Figs 4 and 5). 

At the overall  .01 level, the differences between 
the enhancement conditions and the unenhanced 
were examined. The null hypothesis is that there 
will be no difference between the mean 0 for the 
unenhanced and an enhancement condition. There 
are nine such hypotheses, con'esponding to the nine 
enhancements. A Bonferroni correction to control 
the overall  error rate made each individual a level 
.0011. Four settings of  IW made finding the masses 

D i f f e r e n e e  

significantly harder, three made the task signifi- 
cantly easier, and two made no significant differ- 
ence. The settings that made the task easier are 
window width 1024 with level 3328, window width 
768 with level 3584 and window width 1024 with 
level of 3584 (Table 1). 

Experiment 2 

Again, the repeated measures ANOVA showed 
that there was significant interaction between win- 
dow width and level (P < .0001, F = 60.9; Figs 6 
and 7). As in experiment 1, a quadratic by quadratic 
interaction was signi¡ (P < .0001, F = 32.61). 
Table 2 shows the results of  nine two-sided t-tests. 
Only one image processing setting resulted in 
significantly better performance than the unproc- 
essed, namely window width of 1024 with a 
window level of 3328 (P < .0001). Seven of  the 
settings were not significantly different from the 
unprocessed image. One setting was significantly 
worse (Table 2). 

The probit model predicts that IW will increase 
detection of  masses. For example,  at the contrast 
level of  40 DDLs above background, which is the 
contrast level tested that was nearest to the observ- 
er 's  detection threshold, these results predict that 
the feature detection rate would change from 51% 
to 68% for the conditions of  experiment 1, and 
from 52% to 67% for the conditions of experiment 
2 (Figs 5 and 7). 

0.55 

0 . 0 0  

- 0 . 5 5  
3 5 8 4  3 3 2 8  3 0 7 2  5 1 2  

L e v e l  

Fig 4. Interpolated predicted 
values from repeated measures 

' 7 6 8  ~ 0 ~ 4  ANOVA for Study 1, the differ- 
ence in 0 value versus window 

W l ~ t ~  width and window level. 
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Fig 5. Estimated detection 
probability from Study I for win- 
dow width of 1024 and window 
level of 3328 (---) versus unproc- 
essed (--) condition. The shift in 
the curve to the left ref|ects im- 
proved detection. 
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DISCUSSION 

These results are encouraging. This is the first 
experiment in mammography that demonstrates 
that an alg0rithm can improve the detection of  a 
simulated mass placed in a dense mammogram. At 
the same time, it is obviously important to choose 
the window width and level with care because 
performance can be significantly degraded if inap- 
propriate parameters ate chosen. 

What do these results mean for clinical mammog- 
raphers? Will we be using this technology in the 
clinic in detecting lesions in dense mammograms? 
The use of  graduate student observers and the use 
of simulated masses in this study might incorrectly 
predict the performance of  radiologists in detecting 
real masses in real patients. We have demonstrated 
previously that graduate student performance at 
this task parallels the performance of  experienced 
mammographers. ~5 Evaluation by radiologists on 

Table 1, Summary of differences between unenhanced 
and enhanced • for Study 1 

Mean 
Window Level Window Width Difference in e SD Pvalue 

3072 512 - .50 .108 ,0001 
3072 768 - .32 .093 .0001 
3072 1024 - .34 .089 .0001 
3328 512 -.11 .074 .0001 
3328 768 .04 .087 .0706 
3328 1024 .18 ,104 .0001 
3584 512 - .03 .097 .1716 
3584 768 .14 .082 ,0001 
3584 1024 .12 .121 .0004 

Note: Positive values in mean difference in 6 column corre- 
spond to improved detection of simulated masses. 

i# I# 

II III 

IoglO(DDL a b o v e  b a e k g r o u n d )  

real patients will determine the uhimate utility of 
this algorithm in the clinical setting. Because we 
have used real clinical images and we have simu- 
lated masses using relatively realistic stimuli, we 
ate optimistic that these methods will improve 
clinical performance and that radiologists will be 
using IW to help them in determining whether 
mammograms of women with dense breasts really 
do contain masses. 

One could argue that our methods are limited 
because the small areas studied make IW more 
useful than ir would be in larger areas. By magnify- 
ing the original 12.8 mm • 12.8 mm image to 40 
mm • 40 mm during the printing process, the 
variation in density may be reduced compared to 
the variation of  an actual 40 mm • 40 mm cropped 
section of  a mammogram, because a third fewer 
samples are included. In a similar experiment, 19 we 
found that the variation difference between cropped 
mammographic sections of  different sizes from 
uniformly dense areas of  mammograms was small, 
and unlikely to have a significant effect on feature 
detection of masses when using this experimental 
paradigm. In addition, ideally one would report on 
the standard deviations of  the cr of  the pixel values 
of  the background a s a  parameter affecting the 
probability of  detection of  the mass embedded in 
the background. Although we report this data in all 
other experiments using this paradigm, unfortu- 
nately, we are unable to do so for this experiment 
owing to an error by the programmer. 

Digital mammography will be available in the 
clinic very soon. It is obvious that image processing 



180 PISANO ET AL 
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0 , 5 5  

0.00 

- 0 . 5 5  
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W i d t h  

Fig 6, Interpolated predicted 
values from repeated measures 

3392  3 8 4 0  ANOVA for Study 2, the differ- 
ence in 0 value versus window 

L e v e 1  width and w indow level. 

will be used to optimize the visibility of lesions in 
digital mammograms. 2o Ideally, any image process- 
ing algo¡ that might be useful will be tested on 
real patients in that setting. That will be ah expen- 
sive and time consuming process that will involve 
real patients making clinica]ly important decisions 
about their own breast health, including the advis- 
ability of biopsy, lumpectomy, and mastectomy. 
Ideally, before this technology arrives in the clinic, 
radiologists will have some idea of which category 
of algorithms to test in that setting. This work is 
intended to give radiologists preliminary data to 

narrow the choices that might be useful before the 
expensive clinical tests are undertaken. This ap- 
proach suggests not only which algorithms might 
help clinically but which parameter settings most 
improve detection. 

One could take the approach that the IW dials 
should be spun undl a clinically pleasing image is 
displayed. This approach might be acceptable and 
even convincing to many radiologists. Ir is at least 
possible that what pleases radiologists in terms of 
the aesthetics of the image might not improve the 
detection performance of their visual systems, and 

Fig 7, Estimated detection 
probabiliw from Study 2 for win- 
dow width of 1024 and w indow 
level of 3328 (---) versus unproc- 
essed t--) condition, The shift in 
the curve to the left reflects irn- 
proved detection, 

t .0  �84 

P 0.8 
r 
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b 0.6- 
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loglO(DDL above background) 
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Table 2. Summary of differences between unenhanced 
and enhanced 0 for Study 2 

Mean 
Window Level Window Width Difference in I) SD P value 

3456 640 0.04 0.08 .0239 
3584 640 -0.05 0,09 .0215 
3840 640 -0.31 0.09 .0001 
3200 1024 0.04 0.07 .0142 
3328 1024 0.14 0.08 .0001 
3584 1024 0,01 0.09 .6155 
2944 1536 -0.02 0.07 .1255 
3072 1536 0.06 0.08 .0045 
3328 1536 0.06 0,07 .0013 

Note: Positive values in mean d[fference in 0 co[umn corre- 
spond to improved detection of simulated masses. 

in fact, could worsen their detection performance. 
This project was intended to be more rigorous in 
exploring the window widths and levels that might 
be useful in the most challenging areas of  the 
breast, namely the dense parts. We also have 
performed similar experiments on the AHE class of  
algorithms.2~.22 

This expe¡  does not address how IW would 
effect the appearance of fatty areas of the breast, 
and the delectabili ty of  lesions in those parts. We 
would not want to apply an algorithm that degrades 
performance in areas of  the breast where sensitivity 
is quite high with cun'ent technology. There are two 
possible technical responses to that concem. First, 
IW could be applied selectively to only the dense 
areas as an adjunct to the more standard appearing 
mammogram with the radiologist  pointing and 
clicking to the areas where windowing would be 
desirable. Alternatively, the IW could be individual- 
ized to the patient 's  unique intensity histogr•m so 
that the areas to be processed of the image could be 
selected by the computer itself. In fact, ideally the 
computer could be programmed to choose an 
individual IW setting for each portion of the 

mammogram so that contrast was preserved in all 
portions of  the image. Ongoing expe¡  in our 
laboratory are currently exploring the latter possibil- 
ity. 

Of  course, our results to date cannot estimate the 
exact frequency of  false-positive diagnoses when 
IW is used. Many alternate forced choice tests (in 
our case, 4-AFC) yield proportion correct as the 
primary outcome. MacMil lan  and Creelman dis- 
cussed methods for converting proportion correct 
in this setting to a value of d ' ,  the sensitivity 
parameter of  an receiver operating characteristic 
(ROC) analysis. 23 The particular choice of  conver- 
sion depends on side conditions concerning the 
nature of any rater basis. Given the characteristics 
of  the study design, subjects and training, we 
believe that superior proportion correct will trans- 
late into superior d ' .  If this is true, the practical 
value of IW must be tested in a clinical setting. 
Then ROC analysis will allow separate analysis of 
a reader 's  sensitivity and pay off function on the 
performance of  the technique as part of  a diagnostic 
system. 

CONCLUSION 

The testing of  these methods on patients with 
palpable and mammographical ly  detected lesions 
has been funded by the National Cancer Institute 
and the Department of Defense, and will be ongo- 
ing over the next few years at the University of 
North Carolina and Thomas Jefferson University 
Hospital. We expect to evaluate both [W and 
Contrast Limited Adaptive Histogram Equalization 
(CLAHE) in the clinical setting to determine 
whether or not these algorithms improve the perfor- 
mance of radiologists in detecting and characteriz- 
ing breast lesions. 
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