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ABSTRACT
The conclusive identification of specific etiological factors or pathogenic processes in the illness of schizophrenia
has remained elusive despite great technological progress. The convergence of state-of-art scientific studies
in molecular genetics, molecular neuropathophysiology, in vivo brain imaging and psychopharmacology,
however, indicates that we may be coming much closer to understanding the genesis of schizophrenia. In near
future, the diagnosis and assessment of schizophrenia using biochemical markers may become a “dream
come true” for the medical community as well as for the general population. An understanding of the biochemistry/
visa vis pathophysiology of schizophrenia is essential to the discovery of preventive measures and therapeutic
intervention.
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INTRODUCTION

Schizophrenia is a relatively common, chronic, and frequently
devastating neuropsychiatric disorder, affecting about one
percent of the world’s general population (1). It imposes a
disproportionately large economic burden in terms of
hospitalization, chronic treatment and rehabilitation, and lost
productivity (2). The full syndrome is characterized by positive
symptoms (delusions and hallucinations), negative symptoms
(impaired cognition, volition and emotion) and substantial
functional deterioration (e.g., work, interpersonal relationships,
or self care) typically occurs, especially during the first five to
ten years and then clinical deterioration reaches a
plateau (3).

There is as yet no accepted biological validation of or laboratory
test for the diagnosis of schizophrenia. The human suffering,
family tragedies and financial burden caused by schizophrenia
represent a tremendous challenge for the scientific community

(4). Although some insights into the etiology of schizophrenia
have been developed, an understanding of the illness on the
molecular level remains elusive. Molecular genetics,
neuroanatomy, neurophysiology, brain imaging and
psychopharmacology thus represent important avenues for
current research efforts (5).

Many researchers over the years had the general aim of finding
a specific neurochemical deficiency in schizophrenia. Almost
all of the known neurotransmitters in the brain have been
considered as candidates for defective and/or altered
neurotransmission systems in schizophrenia (6). This
review summarizes the evidence so far regarding various
biochemical alterations in neurotransmission systems in
schizophrenia.

THE NEUROTRANSMITTER HYPOTHESIS OF
SCHIZOPHRENIA

Several theories of schizophrenia are in prevalence; most of
them implicating aberrant neurotransmission systems—in
particular, aberrant dopaminergic, serotoninergic and
glutamatergic systems. It is not clear however that to what
extent any neurochemical findings reflect primary rather than
secondary pathology, compensatory mechanisms, or
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Figure 1. The Neurotransmitter Spectrum of Schizophrenia

environmental influences. The figure below summarizes the
intriguing complicacies involved in the etiopathogenesis of
schizophrenia.

THE DOPAMINE (DA) HYPOTHESIS

Dopaminergic neurons arising in basal ganglia have
widespread projections to different areas of the brain. Five
different types of dopamine receptors are now known to be
present in human brain:

• D1- prefrontal cortex, striatum
• D2 – striatum, low concentration in medial temporal

structures (hippocampus, entorhinal cortex, amygdala),
thalamus, prefrontal cortex

• D3 – striatum and ventral striatum
• D4 - prefrontal cortex and hippocampus (have not been

detected in the striatum)
• D5 - hippocampus and entorhinal cortex

The classical “dopamine hypothesis of schizophrenia”
postulates a hyperactivity of dopaminergic transmission at the
dopamine D2 receptor in the mesencephalic projections to
the limbic striatum especially in the etiology of positive
symptoms (8-10). Negative symptoms and EPS have been

postulated to be related to deficits in dopaminergic activity in
the mesocortical and nigro-striatal systems, respectively
(10,11).

Figure2 : From: Guillin O & Laruelle M. Cellscience Reviews 2005;
2:79-107
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The dopaminergic hypothesis of schizophrenia reposes on
the major following facts: the therapeutic efficiency of
neuroleptics (dopaminergic antagonists); a positive correlation
between plasma homovanillic acid (metabolite of dopamine)
concentration and the severity of schizophrenic illness; a higher
density of dopaminergic D2-receptors revealed by Positron
Emission Tomography (PET), particularly in the striatum; and
an abnormal plasmatic growth-hormone response to
apomorphine (dopaminergic agonist) (12,13).

Psychopharmacological evidence supports the fact that all
clinically useful antipsychotic medications are dopamine
antagonists (14). Positron Emission Tomography (PET) studies
suggest that an antipsychotic effect is obtained when D2
receptor occupancy is between 60-70% and higher occupancy
results in extrapyramidal side effects (15).

Several studies with plasma homovanillic acid (HVA), which
is the major metabolite of dopamine, have also attempted to
assess dopamine function in schizophrenia. It has been shown
that 11-35% of plasma HVA comes from the brain (16-18).
Other studies noted that the behavioral response to
antipsychotic drugs (i.e., a decrease in psychosis levels)
parallels a decrease in plasma HVA levels in schizophrenic
patients over time (19-20). However, plasma HVA derives from
both central and peripheral areas and from both noradrenergic
(NA) and dopaminergic transmissions. The results from these
studies would presumably be insensitive to counterbalanced
changes in dopamine turnover in cortical and subcortical
regions (21).

A model has been proposed that shows that the association
between HVA and MHPG in plasma or urine under varying
rates of NA metabolism can be used to obtain an estimate of
the central DA neuronal contribution of HVA to plasma or urine.
This estimate is called the central dopaminergic index (CDI)
and suggests that only about 30 percent of the total plasma
HVA concentration in schizophrenic patients is derived from
central DA neurons. Since the CDI of plasma HVA is not likely
to be confounded by NA activity, this tool may prove useful in
disentangling the roles played by the DA and NA systems in
schizophrenia (22). Overall, studies support the notion that
although patterns of association exist between dopamine
metabolite levels and psychosis individual effects and
methodological constraints may make them more difficult to
define (23).

Indirect dopamine agonists (e.g., L -dopa, cocaine, and
amphetamines) can induce psychosis in healthy subjects and,
at very low doses, provoke psychotic symptoms in

schizophrenics (9). The dopamine hypothesis has received
support from postmortem and PET indications of increased
dopamine D2 receptor levels in the brains of schizophrenic
patients (24). However, it has been suggested that upregulation
of D2 receptor expression may be the result of adaptation to
antipsychotic drug treatment rather than a biochemical
abnormality intrinsic to schizophrenia. In fact, some PET
studies show no significant difference in D2 receptors densities
between neuroleptic-naive schizophrenics and healthy
controls (25).

Dopamine build-up may be caused by a faulty gene that code
for the enzyme Dopamine-β-hydroxylase, which converts
dopamine to norepinephrine. Blocking this enzyme with the
drug disulfiram results in psychosis indistinguishable from
schizophrenia in alcoholics who overdosed on disulfiram (26).

There is emerging evidence for a presynaptic dopaminergic
abnormality in schizophrenia, implying dysfunction in
presynaptic storage, vesicular transport, release, reuptake,
and metabolic mechanisms in mesolimbic dopamine systems
(27). It has been further hypothesized that dysregulation and
hyper-responsiveness of presynaptic dopamine neurons could
lead to lasting consequences through the induction of
sensitization and/or oxidative stress (3,28). On the contrary,
the functional activity of dopamine may be decreased in the
neocortex in schizophrenia, which could be, at least partially,
associated with negative symptoms (e.g., emotional or
cognitive impairment) (3). Whether a dopamine hyperfunction
or hypofunction occurs under minimal stress thus remains an
open question.

A number of promising partial agonists of the D2 receptor are
currently in clinical trials (29). Drugs of this class, including 3-
(3-hydroxyphenyl)-N -propylpiperidine, could stabilize
dopaminergic tone, that is, they are capable of alleviating signs
of hyperdopaminergia without reducing dopaminergic function
below the baseline level (30). Aripiprazole is a dopamine
autoreceptor partial agonist and postsynaptic D2 receptor
antagonist, and has modest affinity for 5-HT1A, 5-HT2A, 5-
HT6, and 5-HT7 receptors (31).

The molecular characterization of other dopamine receptor
families has changed the number of potential sites of
dysfunction and the mechanism by which it might occur in
schizophrenia. There are reports of altered D1, D3 and D4
receptors but these are either unconfirmed or contradicted by
other studies (32-35).

Biochemical Womb of Schizophrenia
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Considerable data suggest that heritable prefrontal dopamine
function abnormalities are prominent features of schizophrenia
that may relate to a unique role for catechol-o-methyl
transferase (COMT) in dopamine-mediated prefrontal
information processing in working memory (36). COMT
inhibitors can improve working memory in both rodents and
humans (37-38). Interestingly, studies of COMT-deficient mice
have demonstrated that dopamine levels are increased in the
prefrontal cortex but not in the striatum, and that memory
performance is enhanced (39).

Recently it was demonstrated that a COMT polymorphism (a
valine residue at a position of methionine residue), which
results in a COMT enzyme that is four times more active,
occurs at higher rates in both schizophrenics and their
unaffected siblings. Moreover, these subjects performed
relatively poorly on a neuropsychological test of working
memory and manifested inefficient brain activation as
assessed by functional magnetic resonance imaging (FMRI)
suggesting that the high-activity allele impairs prefrontal
cognition and physiology, and thus, may increase the risk for
schizophrenia (40).

But a recent study of 2800 individuals and a major review
concludes that no robust conclusions about the relationship
between COMT and schizophrenia can be drawn and virtually
exclude a simple relationship between schizophrenia and the
Val/Met variant previously thought to dominate COMT function
(41-42).

The intricacies of dopaminergic neurochemical wiring in the
brain still remain fully unearthed but in spite of this ongoing
debate on the exact status of dopamine in the etiopathogenesis
of schizophrenia, dopamine hypothesis continues to occupy
the central seat of neurochemical theory.

The Serotoninergic System

A great deal of attention has been focused on the involvement
of serotonin (5-HT) in the pathophysiology of schizophrenia
(43). The major breakthrough restoring interest in the role of
5-HT in schizophrenia is the identification of 14 distinct 5-HT
receptor subtypes and their extensive impact on multiple
neurotransmitters and behaviors (44).

The “serotonin hypothesis of schizophrenia” is informed by
several observations: a) serotonin receptors are involved in
the psychotomimetic and psychotogenic properties of
hallucinogens [e.g., lysergic acid diethylamide (LSD)]; b) a
number of direct and indirect 5-HT agonists (fenfluramine, 5-
hydroxytryptophan [5-HTP], mCPP, and tryptophan)
sometimes exacerbate symptoms of schizophrenia; c) the
number of cortical 5-HT2A and 5-HT1A receptors is altered in
schizophrenic brains; d) 5-HT2A and 5-HT1A receptors play a
role in the therapeutic and/or side-effect profiles of atypical
antipsychotics (e.g., clozapine); e) certain polymorphisms of
the 5-HT2A receptor gene are associated with schizophrenia;
f) the trophic role of serotonin in neurodevelopment may be
usurped in schizophrenia; g) 5-HT2A receptor–mediated

activation of the prefrontal cortex may be impaired
in some schizophrenics; and h) serotoninergic
and dopaminergic systems are interdependent
and may be simultaneously affected in
schizophrenia (43, 45-49).

Many studies of schizophrenia have also
demonstrated alterations in: 1) serotonergic
neurotransmission as measured by the
concentration of 5-HT and its metabolite
5-hydroxyindoleacetic acid (5-HIAA) and the
density of 5-HT1A or 5-HT2A receptors in post-
mortem brain specimens; and 2) abnormalities
of 5-HT and its metabolites in blood or CSF (50).

The maximum number of platelet 5-HT2A
receptors is increased in drug-naïve
schizophrenic patients that return to normal
following treatment with antipsychotic
medications (51). In addition, the alteration of
serotonin transporters has been reported (52).Figure 3. Comparative actions of atypical and conventional antipsychotic medications
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The notion that 5-HT receptors play a role in mediating atypical
antipsychotic effects has increasingly gained widespread
acceptance. The ability of atypical neuroleptics such as
clozapine to achieve an antipsychotic effect with lower rates
of extrapyramidal symptoms is said to be because of their
robust antagonism at 5-HT receptors and weak antagonism
at D2 receptors (53). Of the other 5-HT receptors with which
these drugs directly interact, the 5-HT1a and 5-HT2c receptors
are the strongest candidates for contributing to their
antipsychotic action and low EPS profile. The 5-HT6 and
5-HT7 receptors may also be of some importance. Stimulation
of the 5-HT1a receptor appears to produce many of the same
effects as antagonism of the 5-HT2a receptor while antagonism
of the 5-HT2c receptor appears to diminish some of the actions
of 5-HT2a receptor antagonism (54).

The fact that many atypical antipsychotic agents are potent 5-
HT2A antagonist is interesting in light of the evidence that
stimulation of 5-HT2A or possibly 5-HT2C receptors is the basis
for the hallucinogenic action of indoleamines such as LSD or
psilocybin (55). Clozapine and other potent 5-HT2A antagonists
such as olanzapine and mianserin ameliorate the psychosis
due to levodopa or direct-acting DA agonists such as
bromocriptine and pergolide in patients with Parkinson’s
disease. This conclusion is supported by the evidence that
two potent D4 antagonists were ineffective antipsychotic agents
in controlled clinical trials of schizophrenics (56).

CSF 5-HIAA levels, at best, provide an integrated measure of
serotonergic activity in multiple brain regions. They cannot
distinguish between selective changes in different regions or
provide any index of the necessary integration between
serotonergic activity and that of other neurotransmitters (50).

Neuroendocrine challenge studies are consistent with an
altered sensitivity of 5-HT2A receptors, since: 1) most
investigators have found blunted responses to indirect-acting
5-HT agonists (e.g., fenfluramine) and cimetidine or
5-HT2A / 2C agonists; and 2) atypical antipsychotic agents block
the neuroendocrine responses to serotonergic agonists.
Among the serotonergic drugs that have been studied in
schizophrenia are: 1) fenfluramine (which induces the release
of 5-HT), 2)m-chlorophenylpiperazine (mCPP a full or partial
agonist at multiple 5-HT receptors); 3) L-tryptophan (a
precursor of 5-HT, and thus, a potential agonist at all 5-HT
receptors); and 4) MK-212 (a potent 5-HT2A and 5-HT2C
agonist, and a weak agonist at 5-HT1A receptors). Common
findings of these studies include blunted prolactin (PRL),
cortisol or temperature response (50).

A number of authors have measured 5-HT receptor density in
post-mortem brain tissue from patients with schizophrenia.
There is strong evidence for a down regulation of 5-HT2A
receptors in the cortex of schizophrenics. Since 5-HT2A
receptor density is decreased by 5-HT2A receptor stimulation,
this may be the result of increased 5-HT2A receptor activity.
Blockade of this activity by drugs such as clozapine and other
atypical antipsychotic agents that are 5-HT2A receptor
antagonists may contribute to their clinical profile (57-59).
There is some evidence in support of 5-HT1A receptor density
increase in specific cortical areas in schizophrenia (60-62).
It is noteworthy that the dorsolateral prefrontal cortex had both
decreased 5-HT2A and increased 5-HT1A receptor binding
sites. This is the area of the brain that has been most implicated
in schizophrenia. The resulting imbalance of the 5-HT1A to
5-HT2A receptor ratio could contribute to abnormalities in the
function of cortical association pathways (50).

There is strong evidence indicating that the 5-HT system
modulates dopaminergic activity and vice versa. This
interaction occurs at the level of the cell bodies in the ventral
tegmentum, substantia nigra and medial and dorsal raphe, as
well as at various terminal areas of these three nuclei.
According to this new found “serotonin-dopamine hypothesis”
there might be enhanced dopaminergic and serotonergic
neurotransmission in subcortical areas in schizophrenia,
leading to positive symptoms, and decreased dopaminergic
and serotonergic activity, perhaps in the prefrontal cortex,
which led to negative symptoms. 5-HT activity has an overall
inhibitory effect upon dopaminergic function (63-68).

Thus, it can be said about the role of 5-HT in schizophrenia
that the functional alterations in the serotonergic system affect
other neurotransmitter system/s and cause the various
behavioral disturbances in schizophrenia. Future studies
examining the role of multiple 5-HT receptors in the
etiopathology and/or treatment of schizophrenia are likely to
yield productive results (50).

Glutamatergic Hypothesis

Excitatory amino acid Glutamate is said to be intimately
associated with brain growth and development of
schizophrenic illness. Several aspects of brain development
and functions of excitatory amino acids have been linked to
the pathology of schizophrenia. First, glutamate receptors
stimulate neurite outgrowth, synaptogenesis and maturation
of synapse in the developing brain. Second, the excitatory
amino acids also play a critical role in neurotoxicity. Third,
several neural tracts and circuits have glutamate as their

Biochemical Womb of Schizophrenia
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neurotransmitter along with synaptic glutamate receptors and
can result in some of the clinical findings of schizophrenia.
Finally, glutamate and dopaminergic systems are known to
modulate each other’s activity levels in a reciprocal fashion
(69-75).

Finding of reduced concentrations of glutamate in the CSF of
patients with schizophrenia in eighties led to the proposition
that decreased glutamatergic activity may be an etiologic factor
in the disorder. This finding was replicated by some but not all
subsequent studies (76).

An alteration in glutamate receptor density in several brain
areas has been reported including prefrontal and left temporal
cortex (77-79). A decrease in mRNA of all non-NMDA receptors
has been demonstrated in the hippocampus and a reduction
in NR1 mRNA levels has been reported in the superior
temporal cortex of a subgroup of patients with schizophrenia
showing significant cognitive deterioration (80-81).

It has been observed that competitive antagonism of NMDA-
receptors has psychotomimetic effects (82). Phencyclidine
(PCP) and ketamine, that are potent non-competitive
antagonists of the NMDA subtype of glutamate receptor
(NMDA-R) induce schizophrenia-like symptoms in healthy
individuals and worsen some symptoms in schizophrenia (5).
One of the features that distinguish NMDA-R antagonists from
other psychotogenic drugs such as amphetamine and LSD is
the degree to which they produce frontal cognitive deficits that
mimic schizophrenia (83). Partial deletion of the gene encoding
a form of the NMDA receptor causes the same behavioral
abnormalities as phencyclidine (84).

Decreased NMDA-R function may thus be a predisposing or
causative factor in schizophrenia (85-87). Postmortem studies
of schizophrenics additionally indicate abnormalities in pre-
and postsynaptic glutamatergic indices. NMDA-R hypofunction
in the cortical association pathways could be responsible for
a variety of cognitive and other negative symptoms and, in
mice, partial deletion of the NMDA-R1 (NR1) subunit causes
the same behavioral abnormalities as PCP (30, 84). In addition,
the NR1 hypomorphic animals manifest reduced [14 C]-2-
deoxygluose uptake in the medial prefrontal and anterior
cingulate cortices, as is observed in chronic schizophrenic
patients (88).

The existence of anatomical and functional interrelationships
between dopamine and glutamate systems in the central
nervous system suggests that inhibition of the NMDA-R would
enhance dopamine neurotransmission (89-91). In humans,

PET studies of dopamine receptor occupancy after acute
administration of ketamine suggest that the NMDA-R
antagonists increase dopamine release in the striatum. In
contrast, chronic administration of NMDA-R antagonists elicits
decreased dopamine release (92-93).

It has been recently shown that both PCP and ketamine have
direct effects on D2 and 5-HT2 receptors. It has also been
proposed that NMDA-R antagonists can cause an excess
compensatory release of glutamate that can overactivate
unoccupied non-NMDA glutamate receptors, including α-
amino-3-hydroxy-5-methy-isoxazole-4-propionic acid (AMPA)
and kainate receptors. The release of glutamate in response
to NMDA-R antagonists might in part be responsible for their
behavioral effects (94-95).

The role of metabotropic glutamate receptors (mGluRs) is also
under consideration. The mGluRs levels were found increased
in the orbitofrontal cortex but not in prefrontal cortex (96).
Excitatory amino acid transporters (EAATs) may also be the
markers of glutamatergic synapse abnormalities as a decrease
in the EAAT3mRNA expression has been found in the striatum
of schizophrenic subjects (97). Further studies are required
to confirm whether this decrease reflects a loss of
glutamatergic cortico-striatal pathways or not.

If schizophrenia involves diminished NMDA receptor activity,
then one would predict that drugs activating the receptor might
be therapeutic. The glutamate theory has been bolstered by
several studies establishing that treatment of schizophrenic
patients with glycine, D-serine or cycloserine causes
symptomatic improvement (76).

A number of agents that interact directly with the glutamatergic
system are currently in various stages of development.
Examples of the new “glutamate-based” agents are the glycine
site agonists, glycine reuptake inhibitors, glutamate release
inhibitors, AMPA agonists and antagonists, ampakines and
drugs acting on different subtypes of metabotropic glutamate
receptors (76, 83, 90).

Amino Acid Disturbances: Glycine, Serine and
Homocysteine

Amino acid disturbances may contribute significantly to the
pathophysiology of schizophrenia. Glutamatergic dysfunction
has already been discussed and associated with this are those
that act through NMDA-glutamate receptors - glycine, serine
and homocysteine.
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NMDA receptors in brain are regulated by glycine, acting via
a strychnine-insensitive regulatory site, and by glycine (GlyT1)
transporters that maintain low glycine levels in the immediate
vicinity of the NMDA receptor complex. Clinical studies with
the NMDA/ glycine-site agonists glycine and D-serine indicate
significant improvements in negative and cognitive symptoms
of schizophrenia, supporting the concept that reduced
activation of the glycine binding site of the NMDA receptor
contributes substantially to ongoing symptoms. In several
glycine trials in schizophrenia, low pretreatment plasma glycine
levels predicted treatment response, suggesting that reduced
glycine concentrations may be of particular importance (98).

Two recent studies demonstrated low glycine levels, low serine
levels and lower glycine-serine ratios in schizophrenics, and
even predicted higher levels of negative symptoms. Low
glycine levels persist even in medicated patients with
schizophrenia, although levels may differ by medication types.
In particular, glycine levels may be higher among patients
receiving clozapine, potentially explaining the differential
effectiveness of NMDA modulators when used in combination
with clozapine or with other antipsychotics (99-101).

In addition to being associated with lower levels of positive
NMDA modulators, schizophrenia may also be associated with
higher levels of endogenous NMDA antagonists, in particular
homocysteine. Homocysteine, a sulfur-containing amino acid,
acts as a partial antagonist at the glycine site of the NMDA
receptor when glycine levels are in the physiologic range.
Homocysteine has been shown to act as an N-methyl-D-
aspartate (NMDA) receptor agonist when glycine levels are
pathologically elevated. At high concentrations, homocysteine
may activate the NMDA receptor glutamate site, leading to
increased susceptibility to excitotoxicity. However, at lower
concentrations homocysteine also has the ability to act as a
competitive antagonist at the NMDA receptor co-agonist
glycine site. Neurodevelopment studies indicate that most
adverse homocysteine effects are significantly blocked by
glycine, reflecting reversal of the inhibitory actions of
homocysteine (102-103).

Homocysteine is neurotoxic and it has been shown that stress
can open the blood-brain barrier to some neurotoxic
substances. Homocysteine may elicit DNA damage response
in neurons that promotes apoptosis and hypersensitivity to
excitotoxicity. An oral methionine load has classically been
reported to exacerbate schizophrenia and is of course
converted to homocysteine (104-106).

Probable mechanisms by which homocysteine might cause

developmental perturbations that increase risk for
schizophrenia is through partial antagonism of the NMDA
receptor and the induction of placental vasculopathy and other
obstetric complications, which may lead to fetal hypoxia and
adverse consequences for fetal development, including
impaired brain growth and disturbances of neurotransmitter
systems (107).

Deficiencies of several nutrients may give rise to maternal
hyperhomocysteinemia. Folate is a prime candidate because
this B vitamin donates a methyl group to homocysteine,
permitting its transformation to methionine, and folate levels
are inversely related to homocysteine levels. Human
pregnancy is a period of increased maternal folate requirement
and thus, of increased susceptibility to folate deficiency
(108-110).

Other nutritional deficiencies that may be responsible for
elevated homocysteine levels include vitamin B12, which acts
as a cofactor in the conversion of homocysteine to methionine,
and vitamin B6, a cofactor in the conversion of homocysteine
to cystathionine and cysteine(108). Elevated homocysteine
levels also result from genetic influences. One of the more
promising candidates is the C677T polymorphism in the gene
for methylenetetrahydrofolate reductase (MTHFR).
Homozygosity for this thermolabile mutation causes a
deficiency in methylenetetrahydrofolate, with a consequent
reduction of the re-methylation of homocysteine to methionine
and elevated homocysteine levels. This mutation has been
associated with schizophrenia in some but not all studies (111).

Deficiencies of other enzymes, such as methionine synthase
and cystathionine β-synthase, may also disrupt the metabolism
of homocysteine and lead to an accumulation of homocysteine.
Folic acid, cobalamin, and pyridoxine supplementation can
markedly lower plasma homocysteine. Thus, if future studies
support a causal link, then daily supplementation with these
vitamins could prevent clinical deterioration in some patients
with schizophrenia and continuation of folic acid
supplementation into the second and third trimesters would
merit evaluation as a strategy for prevention of schizophrenia
in offspring (111).

Gabaergic System

One hypothesis concerning the neurobiological substrate of
cognitive deficits in schizophrenia highlights the role of
inhibitory cortical interneurons that use γ-aminobutyric acid
(GABA) as their main neurotransmitter (112-114). There is
abundant histopathological evidence of abnormalities in GABA

Biochemical Womb of Schizophrenia
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neurons and their postsynaptic receptors in the prefrontal and
anterior cingulate cortices of schizophrenic patients (115-116).

The GABA interneurons are increasingly recognized as
important for coordinating synchronized oscillations in sparse
assemblies of pyramidal neurons; such oscillations are a
plausible physiological substrate for perception, memory, and
cognition and show alterations in schizophrenia (117-120).
These observations predict that drugs modulating inhibitory
transmission via GABA-A receptors could be relevant in
treating cognitive deficits in schizophrenia (113, 121).

Schizophrenic brains exhibit a thirty to fifty percent reduction
in the expression of reelin, a trophic glycoprotein that acts as
a “stop” signal for neuronal migration during development in
the prefrontal cortex and hippocampus (122). In adult brains,
reelin is secreted preferentially by cortical GABAergic
interneurons that binds to integrin receptors located on
dendritic spines of pyramidal neurons or on GABAergic
interneurons expressing the disabled-1 gene product (DAB1),
a cytosolic adaptor protein that mediates reelin action (123).

It is intriguing that the uptake and release of GABA, the density
of GABA transporter, the level of a major enzyme in GABA
biosynthesis glutamic acid decarboxylase, and its mRNA
expression have been reported to be reduced in the brain of
schizophrenic patients (124-126).

Thus, if schizophrenic patients have reduced GABAergic
function, their ability to inhibit increased glutamatergic activity
might be deficient, thus making them more susceptible to
excitotoxicity (83).

Cholinergic System

Although the above discussed altered neurotransmission
hypotheses retain considerable theoretical strength, they do
not explain all features of this disorder. Despite the limited
experimental evidence for abnormal cholinergic
neurotransmission in psychiatric disorders, increased
understanding of the role of acetylcholine in the human brain
and its relationship to other neurotransmitter systems has led
to resurgence of interest in the cholinergic system in
schizophrenia (127).

Impairments in attentional functions and capacities are central
to the cognitive symptoms of schizophrenia and these depend
on the integrity and activity of cortical cholinergic inputs. The
neurobiological, behavioral, and cognitive effects of repeated
exposure to psychostimulants (e.g., amphetamine) model the

importance of cholinergic aspects of schizophrenia (128).

There is enough anatomical and pharmacological evidence
indicating that cholinergic muscarinic receptors may modulate
dopamine and glutamatergic neurons. Moreover, the fact that
schizophrenics have sensory gating and cognitive dysfunction
suggests a role for the cholinergic system in the etiology and
therapy of these deficits. Research evaluating the effects of
partial agonists of muscarinic receptors (e.g., Xanomeline) on
cognitive and psychotic-like symptoms had shown promising
results and may find utility in the treatment of schizophrenia in
near future (129-131).

Adrenergic System

While the evidence for the importance of norepinephrine
physiology in the etiology and treatment of depression is well
known, the importance of norepinephrine in the
pathophysiology and treatment of schizophrenia is relatively
obscure. With the cognitive and behavioral activities of
norepinephrine including focusing attention, working memory,
and coping with challenges, the potential relevance of
norepinephrine to the pathophysiology of schizophrenia is
reasonable.

Norepinephrine is said to be an important player in the
regulation of dopamine and serotonin (132). Locus ceruleus
activity regulates midbrain dopamine neuron activity via
increased norepinephrine and that this effect can be blocked
by the alpha-1 antagonist prazosin, thereby indicating that
regulation of midbrain dopamine neurons is via alpha-1
receptors (133). Animal models of schizophrenia, like
conditioned avoidance and catalepsy, have shown that
alpha-2 antagonist produce beneficial effects when added to
a D2 antagonist by indirectly activating alpha-1 receptor
through increased norepinephrine release (134). Also, double-
blind placebo-controlled studies have shown that adding
alpha-2 antagonist idazoxan to fluphenazine leads to
improvement in both positive and negative symptoms (135).

There is evidence that alpha-2 antagonism of risperidone may
play a significant role in producing its atypical effects by
regulating frontal cortex serotonin levels (136). However,
studies of alpha-2 antagonists using other animal models of
schizophrenia, like prepulse inhibition, do not share this
view (137).

Central noradrenergic dysfunctions are also suggested by
higher cerebrospinal fluid levels of norepinephrine, and a
failure of suppression of its metabolite levels (3-methoxy-4-
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hydroxy-phenylglycol (MHPG)) in plasma after administration
of an alpha-2-adrenergic agonist (13).

The toxic effects of dopamine metabolites on norepinephrine
neurons can also be a deciding factor in the etiopathogenesis
of schizophrenia. Some of the dopamine is auto-oxidized to
6-hydroxydopamine and cause degeneration of peripheral
sympathetic nerve terminals that results in a marked and long-
lasting depletion of norepinephrine. Evidence supporting
6-hydroxydopamine as a neural degenerative agent of
noradrenergic nerve endings comes from the isolation and
identification of an odorous substance (known as trans-3-
methyl-2-hexenoic acid, a metabolic product of
6-hydroxydopamine) found in the sweat of schizophrenics.
Phenylethylamine derivatives with the same 2,4,5- substitution
pattern as 6-hydroxydopamine were found to have high
hallucinogenic activity in humans (138).

Considering all these possible mechanisms, it does appear
that norepinephrine may provide a significant contribution to
the understanding of schizophrenia and its treatment.

Neuropeptides

There is no longer any doubt that neuropeptide-containing
neurons are altered in several neuropsychiatric disorders
because of the fact that a variety of neuropeptides occur
ubiquitously in brain regions. Efforts are now focused to
determine the alternations in neuropeptide systems that are
associated with schizophrenia, mood disorders, anxiety
disorders, alcoholism and various neurodegenerative
disorders (139). Targeting of neuropeptide neuromodulator
systems, capable of concomitantly regulating several
transmitter systems, represents a promising approach for the
development of increasingly effective and side effect-free
antipsychotic drugs (140).

a) N-Acetylaspartylglutamate / N-Acetyl Aspartate
N-acetylaspartylglutamate (NAAG) is an acidic dipeptide
located in glutamatergic neurons and acts as an
antagonist at NMDA receptors. Its metabolite N-acetyl
aspartate (NAA) is considered a marker of neuronal
function. The concentration of NAAG has been seen
increased in the hippocampus, and the activity of
glutamate carboxypeptidase II (GCP II), the enzyme
that cleaves NAAG to produce glutamate and NAA, was
selectively reduced in the frontal cortex, temporal cortex,
and hippocampus in the schizophrenia brains
(141-142).
Similarly, reduced NAA concentrations were found in

frontal and temporal regions of schizophrenic patients
on magnetic resonance spectroscopy (MRS) and
altered NAA/creatine and NAA/choline ratios are also
reported (143-146).

b) Somatostatin
Alterations in the inhibitory circuitry of the dorsolateral
prefrontal cortex (DLPFC) in schizophrenia include a
reduced expression of the messenger ribonucleic acid
(mRNA) for somatostatin, a neuropeptide present in a
subpopulation of GABA neurons. This alteration
appears to be a downstream consequence of impaired
neurotrophin signaling through the trkB receptor (147).

c) Neurotensin
Neurotensin is a tridecapeptide which fulfills many of
the requisite criteria for a role as a central nervous
system (CNS) neurotransmitter. Neurotensin is co-
localized with dopaminergic neurons in the
hypothalamus and midbrain and has been shown to
interact with dopamine at physiological, anatomical and
behavioral levels (148).
Because of its close association with the dopamine
system, the role of neuropeptide Neurotensin (NT) in
clinical disorders hypothesized to involve DA circuits
such as schizophrenia, Parkinson’s disease, and drug
abuse has been closely scrutinized. In addition, NT
neurotransmission has been implicated in regulation of
the stress response, stress-induced gastric ulcers,
temperature regulation, food consumption, and
analgesia. NT also acts as a growth factor in a variety
of human cancer cell lines derived from lung, colon,
prostate, and pancreas (149).
Considerable evidence also exists concordant with the
involvement of NT systems in the mechanism of action
of antipsychotic drugs. The behavioral and biochemical
effects of centrally administered NT remarkably
resemble those of systemically administered
antipsychotic drugs, and antipsychotic drugs increase
NT neurotransmission. These interlaced findings led to
the hypothesis that NT functions as an endogenous
antipsychotic. Clinical studies in which CSF NT
concentrations have been measured revealed a subset
of schizophrenic patients with decreased CSF NT
concentrations that are restored by effective
antipsychotic drug treatment (150).
Increased nucleus accumbens NT neurotransmission,
via the NT1 receptor, can decrease the effects of
activation of the mesolimbic dopamine system and
disruption of the glutamatergic input from limbic cortices,

Biochemical Womb of Schizophrenia



Indian Journal of Clinical Biochemistry, 2008 / 23 (4)

316

resembling the action of clozapine (151). There are
reports that typical and atypical antipsychotic drugs
differentially alter NT neurotransmission in nigrostriatal
and mesolimbic regions affecting the side effect liability
and efficacy, respectively (140).
Thus, it is reasonable to assume that drugs that directly
modify the activity of NT systems, particularly NT
receptor agonists, could plausibly represent a novel
class of neuroleptics (150).

d) Cholecystokinin
Cholecystokinin (CCK ) is involved in the physiologic
modulation of pain perception and modulation of
dopaminergic activity. Dopaminergic pathways are
involved in the antidepressant-type responses triggered
by both enkephalin catabolism inhibitors and CCKb
receptor antagonists (152). Studies have evaluated the
role of CCK in the pathogenesis of schizophrenia.
Significant decreases in immunoreactivity and binding
sites for CCK have been shown in the frontal cortex
and hippocampus at necropsy of schizophrenic patients
(153). Polymorphism of CCK-A receptor has been
shown to be associated with presence of auditory
hallucinations in schizophrenia (154).

e) Other Neuropeptides
Research is on for the search of other plausible
neuropeptides that could have an influence on the
disease of schizophrenia. Various polypeptides, viz.,
Antidiuretic hormone (ADH), Corticotropin, Endorphins
and chromgranin are in focus of researchers but further
studies are required to confirm their status in the
neurochemistry of schizophrenia (155-158).

Hypothalamic-Pitutory-Adrenal (HPA) Axis

There is evidence suggesting dysfunction in the HPA axis in
schizophrenia (159-160) that is demonstrated using the
dexamethasone suppression test (DST). Nonsuppression, due
to the lack of glucocorticoid secretion feedback mechanisms,
occurs frequently in schizophrenia, with percentages varying
between 11 and 55% (161-163). Moreover, several studies
showed that basal cortisol levels are significantly higher in
schizophrenic (schizophrenia) patients compared to normal
controls, although these findings have not been consistent
between studies (159, 164-165).

Studies also suggest a relationship between HPA activity and
symptomatology in schizophrenia. Cortisol secretion has been
associated with more severe positive symptoms in some

(166-167), while in others it was associated with higher ratings
of negative symptoms especially with DST nonsuppression
(168-169).

Stressors, such as 2-deoxyglucose that is a glycopyruvic
stressor, result in increased dopamine release in schizophrenic
brains as reflected in increased plasma HVA, ACTH and
cortisol levels in comparison to normal subjects suggesting
that patients with schizophrenia may have a greater
susceptibility to subcortical dopaminergic release under stress
(170-171). Taken together, these results suggest that HPA axis
dysregulation/activation and hypercortisolemia are frequently
present in schizophrenic patients.

The Immunological Markers

New insights into the complex functioning of immune system
have improved our understanding of its role in the
pathogenesis of schizophrenia. Growing evidence suggests
that immune system functioning may be impaired in
schizophrenia. A recent theory postulates that schizophrenia
may primarily be a consequence of vascular inflammation in
the brain. The theory proposes that abnormalities arise
because genetically modulated inflammatory reactions
damage the micro-vascular system in response to
environmental agents such as infections, hypoxia, and physical
trauma (172-173).

Both innate and specific cellular arms of the immune system
seem to be involved in the dysfunction of the immune system
in schizophrenia. Findings such as alteration in inflammatory
proteins, lymphocytes populations (T4/T8, CD5), antibrain auto-
antibodies, abnormal lymphocytes responses to mitogens,
altered production of interleukins, changes in cytokine levels
in blood and CSF of drug-resistant as well as drug-naïve
patients have lead to two main hypotheses: autoimmunity and
immunologic incompetence (174-179, 13).

Acute Phase Proteins (APP) like ceruloplasmin, C3, C4, etc.,
is a group of proteins whose plasma levels increase in
response to inflammation (180). Most of the investigations
that studied the relationship between ceruloplasmin and
schizophrenia have found elevated levels of ceruloplasmin in
schizophrenic patients, although decreased levels or normal
levels have also been found (181-184). In a recent study,
Ceruloplasmin, C3 and C4 blood levels were found as useful
peripheral biological markers of negative acute paranoid
schizophrenic symptoms (185). An upregulation of APP genes
has been found in schizophrenia, especially in the prefrontal
cortex, and that that these genes overlap in the schizophrenia
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susceptibility loci. It has been suggested that acute phase
reaction may be an aetiological agent in the pathophysiology
of schizophrenia, but not just an accompanying symptom
(186-188).

Cytokines too have their inputs. In addition to providing
communication between immune cells, specific cytokines play
a role in signaling the brain to produce neurochemical,
neuroendocrine, neuroimmune, and behavioral changes (189-
190). Altered levels of IL-6, TNF-α, IL-2 and IFN-γ are widely
reported (191-193).

Cytokine IL-2 exerts numerous effects within the immune as
well as the central nervous system and is thought to serve as
a humoral signal in their communication at different levels of
regulation (194). The data indicate that IL-2 and IL-6 are potent
activators of the HPA axis, which provide additional evidence
to support the hypothesis that hypercortisolemia in
schizophrenia may be mediated by the elevated cytokines
(195). All these alterations may reflect a genetic background
or a non-specific stress response. Several reports on other
cytokines await confirmation (191, 196).

It has recently been shown that inflammation can modify
myelination levels on transplanted oligodendrocyte precursors
and that oligodendrocyte precursor responses are dependent
on the presence of cytokines. Thus, increased expression of
inflammatory genes in schizophrenic subjects may affect
myelin producing cells, offering a possible link between the
inflammatory and the myelin hypothesis of the disease (173).

The relationship between schizophrenia and immunological
factors is further supported by the existence of
psychotomimetic effects that cytokines produce in non-
psychiatric patients (197). Antipsychotic medications have
been found to at least partially normalize abnormal immune
alterations in schizophrenia and may be useful for predicting
the neuroleptic response (193,198). Based on the immunology-
inflammatory hypothesis of schizophrenia, some authors have
treated schizophrenic patients with a combination of
antipsychotics and anti-inflammatory drugs, obtaining a
positive effect on psychopathology (199). Further research is
still needed before use of anti-inflammatory drugs can be
recommended in the treatment of schizophrenia.

Neurosteroid system

Because Neuroactive steroids (NASs) modulate
neurotransmitter systems that are implicated in the pathology
of schizophrenia, recent research has focused on examining

the role that NASs play in the illness. Although research in
this area is relatively new, it appears that NASs may
potentially be implicated in the pathophysiology of the illness
(200). Classical steroid hormones (for example, cortisol,
dihydrotestosterone, and aldosterone) exert their effects via
genomic mechanisms. The term “neuroactive steroids” was
later coined to describe those steroids that exhibit rapid,
nongenomic (but may produce genomic effects) effects on
neuronal excitability by interacting with, and modulating the
activity of, cell surface ligand-gated ion channel receptors,
including GABAA and NMDA receptors (201-202).

NASs can be synthesized in the brain and in the periphery
from cholesterol. NAS synthetic enzymes are present in
peripheral endocrine glands and in glia and nerve cells in
the brain. Examples of NASs include Pregnenolone (PREG)
and its sulfate (PREGS), dehydroepiandrosterone
(DHEA) and its sulfate (DHEAS), 3a-hydroxy ring A-reduced
pregnane steroids (3a, 5a-tetrahydroprogesteroneTHP
and 3a, 5a-tetrahydrodeoxycorticosteroneTHDOC),
androsterone, progesterone (PROG), testosterone, cortisol
and estrogen.

NASs play a modulatory role in the central nervous system
and affect many neurotransmitter systems. PREG and DHEA
may be memory enhancing, and 3a-hydroxy ring A-reduced
pregnane steroids exhibit sedative, hypnotic, anesthetic, and
anxiolytic properties. Neuroactive steroids modulate other
neurotransmitter receptors, including nicotinic acetylcholine,
AMPA, kainite, oxytocin, sigma, glycine, and serotonin
receptors (203-204). NASs synthesized in the brain and the
periphery are among the most selective, potent, and
efficacious allosteric modulators of the GABAA receptor
complex or NMDA receptors (205-206).

Research examining the effects of NASs in schizophrenia is
a relatively new field with many unknowns and sometimes
seemingly contradictory findings. However, altered circulating
DHEA, DHEAS, testosterone, cortisol, PROG, and estrogen
levels have been reported in patients with schizophrenia, and
these NASs correlate, to varying degrees, with symptom
severity (207-209).

Interestingly, animal studies show that NAS concentrations
may be affected by atypical but not typical antipsychotic
treatment and may be a contributing factor in the efficacy of
antipsychotic medication (210-211). In extension to this, NASs,
such as DHEA and DHEAS, may also possess intrinsic
antipsychotic properties (212).
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Because of the lack of studies investigating NASs in drug-
naive individuals with schizophrenia, it is unclear at this point
whether altered steroid plasma levels are due to the disease
process or to comorbid symptoms or are the result of
treatment itself. Following NASs over time and during
treatment would help to establish the precise changes in
steroid concentrations and their relation to symptom domains
in schizophrenia. The precise pharmacokinetic and
pharmacodynamic profile of NAS is not yet known and thus,
warrants further investigations.

Intracellular Ca++ signalling

Ca2+ is capable of inducing structural and cognitive deficits
seen in schizophrenia. Evidence of the ability of antipsychotic
drugs to affect Ca2+ signaling is also present. Based on these
data, a hypothesis has been proposed that altered Ca2+

signaling may constitute the central unifying molecular
pathology in schizophrenia. According to this hypothesis
schizophrenia can result from alterations in multiple proteins
and other molecules as long as these alterations lead to
abnormalities in certain key aspects of intracellular Ca2+

signaling cascades (213).

Other neurochemical changes

The GABAergic system has been repeatedly postulated to
mediate an inhibitory deficit as a central pathophysiological
mechanism in schizophrenia, but the findings are controversial,
at least in some areas, and mostly negative regarding
treatment with drugs enhancing GABAergic activity. Although
the GABAergic system should be further studied, especially
in sensory gating model in humans, researchers recommend
that an emphasis on other inhibitory mechanisms may prove
useful and provide more effective treatment. The
neuromodulator adenosine has been proposed as a candidate
for this purpose. A state of adenosinergic hypoactivity in
schizophrenia is suggested to be compatible not only with the
inhibitory deficit but also with symptoms, clinical response to
antipsychotics, impaired sensory gating, deteriorating course,
increased smoking and sleep alterations reported in
schizophrenia (214-215).

Changes in adhesion molecules (e.g., neural cell adhesion
molecule), cytoskeletal proteins, neurotrophins (e.g., brain-
derived neurotrophic factor, trkB), and other cell–cell signaling
molecules have been observed in the brains of schizophrenic
patients (216-217).

The suggestion that schizophrenia may be associated with

synaptic malfunction or damage has led to studies of synaptic-
associated proteins in post-mortem brains with conflicting
results. Reduced levels of synaptophysin, mRNAs coding for
synapsin 1A and 1B, synaptophysin, synaptic vesicle protein
rab3a and synaptosomal associated protein SNAP-25 have
been reported. Levels of the neural cell adhesion molecule N-
CAM and syntaxin, non-phosphorylated MAPs and GAP-43
were found raised (218-225). Considering the early state of
this work it would be premature to try and draw any
conclusions. However it is clearly a field of great promise.

CONCLUSION

Central nervous system is one of the most complicated areas
to understand in human physiology, guiding us to strive for
perpetual revision of our understanding of the pathophysiology
of mental illnesses and their treatment. Current data suggest
that schizophrenia may represent a spectrum of phenotypic
consequences that involve the dynamic gene–environment–
development interactions posing a tremendous challenge for
the clinical elaboration of mechanisms operative in
schizophrenia.

Given the not so good treatment outcomes, we are reminded
of the fact that our current understanding of the disease
process in schizophrenia is far from complete. The need of
the hour is to conclusively identify specific etiological factors
and pathogenic processes in schizophrenia. In addition to
improving prognoses, studies of the illness may more generally
deepen our understanding of the working of the normal human
brain. Search for biological markers may allow for early
identification and proactive intervention in the disease process.
Evidence ranging from neuroanatomy, neurophysiology, brain
imaging, genetic analysis and psychopharmacology, is
promising to provide a host of new insights into the etiology
and treatment of schizophrenia. Thus, it is reasonable to
expect major breakthroughs in our understanding of the
pathophysiology of schizophrenia and in the development of
effective therapeutic measures of curative potential in times
to come.
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