Multinomial-Dirichlet vs. true distribution, scenario 1
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Multinomial-Dirichlet vs. true distribution, scenario 3
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Figure S1 This figure represents an empirical sample from the true distribution of allele frequency (black discrete
distribution) in four scenarios, and two approximations to it: Multinomial-Dirichlet and truncated normal. The parameter
values are: Scenario 1: T = 10 generations, ny = 100 individuals, initial frequency qj1 = 0.5; Scenario 2: T = 100,

n, = 100, q;; = 0.5; Scenario 3: T = 10, n, = 100, q;; = 0.95; Scenario 4: T = 100, n, = 100, g;; = 0.95.
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File S1

Calculating coancestry coefficients

Calculating coancestry coefficients from the admixture F-model (AFM). The frequency of allele u in

subpopulation A is simply the average of the indicator variables x; .,

1 na
Paju = mzizl(xijm + Xijou)-  (EQ.S1)

The frequency py j, is a random variable, with expectation (over the flow of neutral alleles through a pedigree structure

that we consider fixed) qj,,. The covariance among subpopulations A4 and B is

Cov(paju Peju) = E[(Paju — Pju) ®sju — Pju)] = E(@ajuPsiu) — @5 = (qju — 45)045, (Ea.S2)

where the last equality follows (at the limit of low mutation rate) by noting that identity by state follows either from

identity by descent, or by the two distinct alleles in the ancestral population being identical by state,
E(xpjuXiju) = @ + 05(qju — a5) (Eq.S3)
and substituting the definitions of p4 ,, (Eq. S1) and HfB (Eq. 1 in the main text) into Equation S1.

In the AFM, it holds that

ny ny
Cov(iju,pB,-u) = Cov (Zk—l KakZkju » Zk—l KBkaju>- (Eq.54)

Because the lineages are independent, Cov(zy jy, Z'j,,)=0 for all k # k'. Thus, Equation S4 reduces to

Qju — qu'u

ny ny
Cov(iju,pB,-u) = Zk:1 KarKpiVar Zjy, :Zk=1 KaxKpk PR (Eq.S5)

Combining this with Eq. S2 yields

2 P n Qju — quu
(qju — 45)0%5 = et KaxKpk a1 (Eq.S6)

and hence

L KprK
QZJB = Z —AkBk (Eg. 12, main text)
k=1 Qg +1
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Calculating coancestry coefficients from a pedigree. If the complete pedigree is known, it is easy to

calculate coancestry coefficients for each pair of individuals using the recursive formula (Lynch and Walsh 1998),

COis() T 0y Oss(i) T Oswa() T laws() T awa() o
0, = 5 = 2 for i #1,

_ 1+ 6050ma0)

Above, s(i) and d(i) are the sire and dam of individual i, respectively. We used this formula for calculating the true value

of 8% in our simulated data sets.
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File S2

Models for allele frequencies

The vector of allele counts at locus j in an isolated population A for generation t + 1 follows the multinomial distribution

na;(t + 1|ng()~Mult(2ny, pa;(t) ) (Eq.S8)

ny;(t)
2ny

where p4;(t) = is the allele frequency for the generation t. While n; follows a multinomial random walk, p4; follows
a corresponding process on an n; — 1 dimensional simplex. This discrete process is often approximated by a continuous-
valued random process, the so-called Wright-Fisher diffusion (see e.g. Nicholson et al. 2002). Kimura (1955) first derived

the exact solution for the distribution of allele frequencies of a biallelic locus under Wright-Fisher diffusion. This solution is

not Gaussian, because the diffusion is non-isotropic. Solutions have also been obtained for multiallelic loci (Tavaré 1984;
Xie 2011). However, implementing these solutions in the AFM framework would pose considerable computational
challenges because of the need to iterate infinite, high-dimensional sums. In case of biallelic loci, the solution of Wright-
Fisher diffusion is often approximated by a truncated normal distribution (e.g. Balding 2003; Coop et al. 2010; Nicholson et
al. 2002). However, this approximation cannot be applied on multiallelic loci as such, because the distribution of p 4; needs
to be restricted on the simplex A™ ™1, The alternative that we apply here is to use the Dirichlet distribution as a

phenomenological, i.e. non-mechanistic, model for allele frequencies.

Application of the Dirichlet distribution as a model of pure drift may be considered questionable for two reasons. Firstly,
the Dirichlet distribution is known to arise as an equilibrium distribution from the balance of random drift and mutation or
migration (e.g. Nicholson et al. 2002; Rannala 1996), but not as a result of pure random drift in an isolated population.
Secondly, the Dirichlet distribution is a continuous distribution such that each component is restricted on the open interval
10,1[, which gives a zero probability for the fixation of any one allele. However, with a small value of the parameter a,, the
Dirichlet distribution can have much of its probability mass very close to the boundaries. Thus, when supplemented with a

sampling model for a finite population,
nAj~Mult(2nA, ij),
ij~Dirichlet(aAq]-),

the Dirichlet model is able to predict a high probability of fixation. In the AFM, we use Dirichlet-distributed allele

frequencies z,; to model the evolutionary history of the independent lineages, and the multinomial step naturally follows
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from the fact that the sample of genotypes is finite, even if the whole subpopulation is sampled. Below, we investigate this
model by a comparison with the truncated normal distribution in a biallelic case where both distributions are easily

tractable.

We consider a closed population of N individuals that mates randomly for T generations, and assume that the initial
frequency of allele 1 has been gqj, . In this Supplement, we focus on four representative cases: symmetric allele frequencies
with moderate drift (Scenario 1, Fig. S1), symmetric allele frequencies with a high amount of drift (Scenario 2, Fig. S1),
uneven allele frequencies with moderate drift (Scenario 3, Fig. S1) and uneven allele frequencies with a high amount of
drift (Scenario 4, Fig. S1). To sample from this model, we first generated a sample of size 10> from the last generation by
using the true model (repeated application of Eq. S8). Then, we derived a corresponding sample from the Dirichlet
approximation by randomizing pqu for 105 times and sampling the allele counts for each realization from Mult(ZnA, p;U-).
Finally, we considered the model of allele frequencies under the truncated normal approximation. As suggested by

Nicholson et al. (2002), we specified the allele frequency as

ij1"’N(q]‘1' cqj(1 - le)) =0

so that the extinction probability of allele 1 was calculated as ®(0) and the fixation probability as 1 — ®(1). We calculated
the pointwise probabilities of the discrete classes as (D'(pA]-l)/ZnA, i.e. by dividing the Gaussian density function by the
number of discrete values in ]0,1]. While theoretical values exist for the drift parameters ¢ and a4 given the demographic
model, we optimized the values of these parameters in each scenario by minimizing the square distance (denoted D?) with

the true (empirical) distribution.

The results show that both the Dirichlet and truncated normal are imperfect approximations. In scenario 1, where drift is
moderate and fixations do not occur, both approximations are qualitatively good, while the truncated normal distribution
has a better goodness of fit (Multinomial-Dirichlet D? = 9.2x1078; truncated normal D? = 5.9x1078). In scenario 2, the
truncated normal approximation has a better goodness of fit (D? = 5.9x1077), than the Dirichlet approximation (D? =
1.5x107%) which has an inconveniently convex shape in this case. In scenario 3, the truncated normal approximation has a
better goodness of fit (D% = 1.1x1073), but it is qualitatively different from the data by having a clear mode in the interior
of [0,1] which the Dirichlet approximation (D? = 2.5x1075) does not have. In scenario 4, the Dirichlet approximation is
better (D? = 3.8x10™* as opposed to truncated normal D? = 6.1x107%). In general, both distributions have problems in
coping with the data when the amount of drift is high, which shows in the increase of the square distances. Finally, we note
that the expectation of the truncated normal distribution is not strictly q;; which would be expected under pure random

drift. On the other hand, this is likely to be unimportant when the amount of drift is low.
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File S3

The MCMC sampling scheme

We used a random-walk Metropolis-Hastings algorithm to sample the joint posterior density of q, @ and k. Below, we

describe how each parameter was sampled while keeping the other parameters fixed.

*  Sampling the drift parameters a. We used N(ay, 53;) distributions separately for each k to draw proposals for
log a;.. The variance parameters 8§k were adjusted during the burn-in as in Ovaskainen et al. (2008) to give an
accept ratio of 0.44.

*  Sampling lineage loadings k. We used TDD(§,, k), i-e. truncated Dirichlet, distributions (Fang et al. 2000)
separately for each A and j to draw proposals for k,. The 6,.,’s are proposal parameters that were adjusted
during the burn-in as in Ovaskainen et al. (2008) to give an accept ratio of 0.44.

*  Sampling ancestral allele frequencies q and lineage-specific allele frequencies z. We used TDD((quqj) and
TDD((quzk]-) distributions separately for each j and k to draw proposals for the allele frequencies. The qu’s are
proposal parameters that are adjusted during the burn-in as in Ovaskainen et al. (2008) to give an accept ratio of
0.44.

We thus used the truncated Dirichlet distribution of Fang et al. (2000) to perform the Metropolis-Hastings random walk for
the Dirichlet-distributed variables k, q and z with a pre-set truncation threshold T = 10~7. This greatly improves the
mixing properties of the Markov chain, because it helps to avoid numerical problems on the boundary of the parameter
space (i.e. on the edges of the simplices A™~! and A™~1). According to our observation, the method that Fang et al.
(2000) present for sampling from TDD may produce biased samples for high truncation thresholds such as T = 1071,

However, to our experience, this does not compromise the statistical power of our algorithm with T = 1077.
We have implemented the algorithm described above in the R-package RAFM (Karhunen 2012).
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