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SUPPORTING INFORMATION FOR “DEMOGRAPHIC INFERENCE USING
SPECTRAL METHODS ON SNP DATA FROM MULTIPLE POPULATIONS,

WITH ESTIMATES OF PARAMETERS FOR RECENT HUMAN
OUT-OF-AFRICA EXPANSION”

SERGIO LUKIĆ1 AND JODY HEY2

1. MULTI-POPULATION WRIGHT-FISHER PROCESSES WITH NO MIGRATION

In this section we compute the solution to the diffusion equations that describe the time
evolution of the density of population allele frequencies under random drift, mutational in-
flux and no migration between populations. First, we review the solution given by Kimura
in [1] when the number of populations is K = 1. Second, we consider K = 2 popula-
tions. To this end we use the boundary conditions introduced in [2], solve the associated
equations and finally, we show how this solution can be extended to an arbitrary number
of populationsK.

1.1. One population. When the number of populations is one, the density of population
allele frequencies φ(x, t) satisfies the diffusion equation:

(1)
∂φ(x, t)

∂t
=

1

4N

∂2

∂x2
[x(1− x)φ(x, t)] + 2Nuδ(x− 1/2N),

whereN is the effective population size of a diploid panmictic population, δ(x−1/2N) is
the Dirac delta peaked at x = 1/2N , and φ(x, t) satisfies absorbing boundary conditions
at x = 0 and x = 1. In more general scenarios we can use an effective mutation density
µ(x) instead of the Dirac delta term, [2].
Kimura showed in [1] how Eq. (1) can be solved explicitly by expressing φ(x, t) as

a polynomial expansion. In particular, he used the basis of Gegenbauer polynomials in
which the diffusion operator can be expressed as an infinite diagonal matrix. The shifted
Gegenbauer polynomials are a class of classical polynomials on the interval [0, 1] defined
as
(2)

Tn(x) =

√

(n+ 2)(2n+ 3)

n+ 1
P (1,1)
n (2x− 1),

∫ 1

0
Tn(x)Tm(x)x(1− x)dx = δnm

where P (1,1)
n (z) are the classical Jacobi polynomials defined on the interval −1 ≤ z ≤ 1

with weight w(z) = (1 − z)(1 + z). These polynomials satisfy the associated Jacobi
equation:

(3)
∂2

∂x2
[x(1− x)Tn(x)] = −(n+ 1)(n+ 2)Tn(x).
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2 SERGIO LUKIĆ1 AND JODY HEY2

Thus, if we expand the density of population frequencies in this polynomial basis

φ(x, t) =
∞
∑

n=0

an(t)Tn(x),

the diffusion equation in Eq. (1) can be written as
(4)
∞
∑

n=0

dan(t)

dt
Tn(x) = −

∞
∑

n=0

(n+ 1)(n+ 2)

4N
an(t)Tn(x)+2Nu

∞
∑

n=0

Tn(1/2N)
1− 1/2N

2N
Tn(x).

For simplicity and to shorten the notation, we denote as µn the contribution due to muta-
tional influx µn = 2NuTn(1/2N) 1−1/2N

2N . Using this notation, the Ordinary Differential
Equation that obeys the coefficients an(t) can be written as:

(5)
dan(t)

dt
= −

(n+ 1)(n+ 2)

4N
an(t) + µn.

Eq. (5) is a linear differential equation of first order with an inhomogeneous term; this
class of equations have a known simple solution which can be written as

(6) an(t) =

[

an(0)−
4Nµn

(n+ 1)(n+ 2)

]

exp

(

−
(n+ 1)(n+ 2)

4N
t

)

+
4Nµn

(n+ 1)(n+ 2)
.

Here, an(0) are the coefficients associated with the polynomial expansion of the initial
density of population frequencies, which can be computed as

an(0) =

∫ 1

0
φ(x, 0)Tn(x)x(1− x)dx.

Therefore, given any density of population frequencies φ(x, 0) at time t = 0, we can
compute the resulting density φ(x, t) after t generations evolving under random drift and
mutational influx by means of the Gegenbauer expansion φ(x, t) =

∑∞

n=0 an(t)Tn(x).
The time-dependent coefficients an(t) determined in Eq. (6), are a function of the co-
efficients at initial time and other population genetic parameters such as population size,
mutation rate and time. Given the solution φ(x, t), the Allele Frequency Spectrum asso-
ciated with a sample of C chromosomes is easily computed by introducing the binomial
distribution with parameters C and x as:

fi(t) =
C!

(C − i)!i!

∞
∑

n=0

an(t)

∫ 1

0
xi(1− x)C−iTn(x)dx, 0 < i < C,

where fi is the expected number of SNPs that have the derived state in exactly i chromo-
somes (out of a sample of C chromosomes). Properties of the Jacobi polynomials show
that all terms of this sum vanish for n > C − 2, thus the AFS can be computed exactly as
the finite sum

(7) fi(t) =
C!

(C − i)!i!

C−2
∑

n=0

an(t)

∫ 1

0
xi(1− x)C−iTn(x)dx.

This exact solution can be generalized to an arbitrary number of populations. In the
next subsection we show how to compute the solution to the time-evolution of the density
of allele frequencies when the number of populations is two.
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SUPPORTING INFORMATION 3

1.2. Two populations. The diffusion equation that describes the dynamics of the density
of allele frequencies in two isolated populations is a natural generalization of the one-
population case studied above. In particular, if x1 and x2 are the derived allele frequencies
in population 1 and 2, N1 and N2 are the effective population sizes of both populations
and φ(x1, x2, t) is the joint density of population frequencies, φ(x1, x2, t) satisfies the
following forward diffusion equation

∂φ

∂t
=

1

4N1

∂2

∂x2
1

[x1(1− x1)φ] + 2N1uδ(x1 − 1/2N1)δ(x2)

+
1

4N2

∂2

∂x2
2

[x2(1− x2)φ] + 2N2uδ(x1)δ(x2 − 1/2N2).(8)

As was shown in [2], the solution to Eq. (8) can be expressed as a generalized density
with contributions from the different boundary components of the square [0, 1]× [0, 1]:

φ(x1, x2, t) = φA(x1, x2, t) + φB(x2=0)(x1, t)δ(x2) +

φB(x2=1)(x1, t)δ(1− x2) + φB(x1=0)(x2, t)δ(x1) + φB(x1=1)(x2, t)δ(1− x1) +

φC(x1=1,x2=0)(t)δ(1− x1)δ(x2) + φC(x1=0,x2=1)(t)δ(x1)δ(1− x2).(9)
The terms that are multiplied by Dirac deltas represent the contributions to the density that
are localized in the different boundary components. In particular, theA-term is localized in
the bulk of the square, the four B-terms are localized in the edges of the square and finally,
the two C-terms are localized in the two vertices of the square that are not absorbing. The
Ancestral vertex (x1 = 0, x2 = 0) and the Derived vertex (x1 = 1, x2 = 1) are absorbing
and hence do not contribute SNPs to the density φ(x1, x2, t).
As Eq. (8) is the natural extension of the one-population process and the one-population

diffusion equation can be solved by means of polynomials expansions, we expand each
term in Eq. (9) using the same basis of Jacobi polynomials Tn(x) defined in Eq. (2). As
we will see at the end of this section, such a polynomial expansion will allow us to find
the exact solution of the two-population process. In particular, we write the polynomial
expansion of each term in Eq. (9) as:

φA(x1, x2, t) =
∞
∑

n,m=0

aAnm(t)Tn(x1)Tm(x2),

φB(x2=0)(x1, t) =
∞
∑

n=0

aB(x2=0),n(t)Tn(x1),

φB(x2=1)(x1, t) =
∞
∑

n=0

aB(x2=1),n(t)Tn(x1),

φB(x1=0)(x2, t) =
∞
∑

m=0

aB(x1=0),m(t)Tm(x2),

φB(x1=1)(x2, t) =
∞
∑

m=0

aB(x1=1),m(t)Tm(x2),

φC(x1=1,x2=0)(t) = aC(x1=1,x2=0)(t),

φC(x1=0,x2=1)(t) = aC(x1=0,x2=1)(t).(10)
In this polynomial basis, Eq. (8) requires that the a-variables satisfy a set of Ordinary
Differential Equations (ODE) that can be integrated exactly. The associated ODEs can
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4 SERGIO LUKIĆ1 AND JODY HEY2

be determined by taking into account the different contributions to the dynamics of the
a-variables (random drift, influx of polymorphisms in the boundary components due to
fixation events, and influx of polymorphisms due to mutations). Following [2] we know
that the dynamics of the aAnm(t)-terms is just governed by random drift (there is no in-
flux of polymorphisms). On the other hand, the dynamics of the terms aB(x1=1),m(t) and
aB(x2=1),n(t) depend on both random drift and the influx of polymorphisms that reach fix-
ation at either x1 = 1 or x2 = 1. The terms aB(x2=0),n(t) and aB(x1=0),m(t) furthermore
receive the constant influx of polymorphisms due to de novo mutations at the popula-
tion level. Finally, the time evolution of the terms aC(x1=1,x2=0)(t) and aC(x1=0,x2=1)(t)

is described by the influx of polymorphisms that reach fixation from φB(x2=0)(x1, t) and
φB(x1=1)(x2, t), in the case of aC(x1=1,x2=0)(t), or from φB(x1=0)(x2, t) and φB(x2=1)(x1, t) in
the case of φC(x1=0,x2=1)(t).
The dynamics of the a-coefficients can be made quantitatively explicit in the following

system of linear differential equations:

(11)
daAnm
dt

= −
(

(n+ 1)(n+ 2)

4N1
+

(m+ 1)(m+ 2)

4N2

)

aAnm,

(12)
daB(x2=0),n

dt
= −

(n+ 1)(n+ 2)

4N1
aB(x2=0),n + µ1

n +
∞
∑

m=0

aAnmTm(0)

4N2
,

here, µ1
n = 2N1u × Tn(1/2N1)

1−1/2N1

2N1
is the contribution due to mutational influx in

population 1,

(13)
daB(x1=0),m

dt
= −

(m+ 1)(m+ 2)

4N2
aB(x1=0),m + µ2

m +
∞
∑

n=0

aAnmTn(0)

4N1
,

here, µ2
m = 2N2u × Tm(1/2N2)

1−1/2N2

2N2
is the contribution due to mutational influx in

population 2,

(14)
daB(x2=1),n

dt
= −

(n+ 1)(n+ 2)

4N1
aB(x2=1),n +

∞
∑

m=0

aAnmTm(1)

4N2
,

(15)
daB(x1=1),m

dt
= −

(m+ 1)(m+ 2)

4N2
aB(x1=1),m +

∞
∑

n=0

aAnmTn(1)

4N1
,

(16)
daC(x1=1,x2=0)

dt
=

∞
∑

n=0

aB(x2=0),nTn(1)

4N1
+

∞
∑

m=0

aB(x1=1),mTm(0)

4N2
,

and

(17)
daC(x1=0,x2=1)

dt
=

∞
∑

n=0

aB(x2=1),nTn(0)

4N1
+

∞
∑

m=0

aB(x1=0),mTm(1)

4N2
.

This system of coupled linear differential equations can be solved by integrating first the
uncoupled equation Eq. (11), using the corresponding solution to solve Eqs. (12), (13),
(14), and (15), and finally using those solutions to solve Eq. (16) and Eq. (17). At each
step, one has to integrate a set of linear ODEs of first order whose solutions are known.
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SUPPORTING INFORMATION 5

The solution of Eq. (11) is:

(18) aAnm(t) = aAnm(0) exp

[

−
(

(n+ 1)(n+ 2)

4N1
+

(m+ 1)(m+ 2)

4N2

)

t

]

,

with aAnm(0) the coefficients associated with φA(x1, x2, 0) at initial time:

aAnm(0) =

∫ 1

0

∫ 1

0
φA(x1, x2, 0)Tn(x1)Tm(x2)x1(1− x1)x2(1− x2)dx1dx2.

Now, we can use the solution Eq. (18) to integrate Eqs. (12), (13), (14), and (15). Hence,
we can write the solution of Eq. (12) as
(19)

aB(x2=0),n(t) = bB(x2=0),n exp

(

−
(n+ 1)(n+ 2)

4N1
t

)

+
4N1µ1

n

(n+ 1)(n+ 2)
−

∞
∑

m=0

aAnm(t)Tm(0)

(m+ 1)(m+ 2)
,

with bB(x2=0),n a time-independent function defined as

bB(x2=0),n = aB(x2=0),n(0)−
4N1µ1

n

(n+ 1)(n+ 2)
+

∞
∑

m=0

aAnm(0)Tm(0)

(m+ 1)(m+ 2)
.

The coefficients aB(x2=0),n(0) are associated with the initial-time density as

aB(x2=0),n(0) =

∫ 1

0
φB(x2=0)(x1, 0)Tn(x1)x1(1− x1)dx1.

Similarly, the solution of (13) is
(20)

aB(x1=0),m(t) = bB(x1=0),m exp

(

−
(m+ 1)(m+ 2)

4N2
t

)

+
4N2µ2

m

(m+ 1)(m+ 2)
−

∞
∑

n=0

aAnm(t)Tn(0)

(n+ 1)(n+ 2)
,

with bB(x1=0),m defined as

bB(x1=0),m = aB(x1=0),m(0)−
4N2µ2

m

(m+ 1)(m+ 2)
+

∞
∑

n=0

aAnm(0)Tn(0)

(n+ 1)(n+ 2)
.

The solution of (14) is

(21) aB(x2=1),n(t) = bB(x2=1),n exp

(

−
(n+ 1)(n+ 2)

4N1
t

)

−
∞
∑

m=0

aAnm(t)Tm(1)

(m+ 1)(m+ 2)
,

with bB(x2=1),n defined as

bB(x2=1),n = aB(x2=1),n(0) +
∞
∑

m=0

aAnm(0)Tm(1)

(m+ 1)(m+ 2)
.

And finally, for this class of solutions, the solution of (15) is

(22) aB(x1=1),m(t) = bB(x1=1),m exp

(

−
(m+ 1)(m+ 2)

4N2
t

)

−
∞
∑

n=0

aAnm(t)Tn(1)

(n+ 1)(n+ 2)
,

with bB(x1=1),m defined as

bB(x1=1),m = aB(x1=1),m(0) +
∞
∑

n=0

aAnm(0)Tn(1)

(n+ 1)(n+ 2)
.
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6 SERGIO LUKIĆ1 AND JODY HEY2

The solutions to Eqs. (16) and (17) are frequency-independent functions of time which can
be obtained by integrating Eqs. (19), (20), (21), and (22):
(23)

∆aC(x1=1,x2=0)(t) =
∞
∑

n=0

Tn(1)

4N1

∫ t

0
aB(x2=0),n(u)du+

∞
∑

m=0

Tm(0)

4N2

∫ t

0
aB(x1=1),m(u)du,

and
(24)

∆aC(x1=0,x2=1)(t) =
∞
∑

n=0

Tn(0)

4N1

∫ t

0
aB(x2=1),n(u)du+

∞
∑

m=0

Tm(1)

4N2

∫ t

0
aB(x1=0),m(u)du,

where the∆a terms are defined as:
∆aC(x1=1,x2=0)(t) := aC(x1=1,x2=0)(t)− aC(x1=1,x2=0)(0),

and
∆aC(x1=0,x2=1)(t) := aC(x1=0,x2=1)(t)− aC(x1=0,x2=1)(0).

In summary, the solution of Eq. (8) can be written as a generalized density with seven
components (as in Eq. (9)). Each of these seven boundary-specific densities can be ex-
panded by means of a polynomial expansion (as in Eq. (10)). The time-dependent coeffi-
cients associated with these expansions were obtained in Eqs. (18)-(24).
Given an explicit solution φ(x1, x2, t), one can make connections with measurable

quantities by computing the theoretical prediction of some of them. For instance, one
can compute the Allele Frequency Spectrum associated with a sample of C chromosomes
by introducing the binomial distribution as:
(25)

fij(t) =
C!

(C − i)!i!

C!

(C − j)!j!

∫ 1

0

∫ 1

0
xi
1(1− x1)

C−ixj
2(1− x2)

C−jφ(x1, x2, t)dx1dx2,

for 0 ≤ i ≤ C, 0 ≤ j ≤ C and 0 < i+ j < 2C. Here, fij is the expected number of SNPs
in which the derived state is found in i chromosomes in population one and j chromosomes
in population two. In general, evaluating Eq. (25) requires integrating φ(x1, x2, t), which
involves computing several infinite sums. However, this formula becomes particularly
simple when 0 < i < C and 0 < j < C:

fij(t) =
C!

(C − i)!i!

C!

(C − j)!j!

∞
∑

n,m=0

aAnm(t)×

∫ 1

0

∫ 1

0
xi
1(1− x1)

C−ixj
2(1− x2)

C−jTn(x1)Tm(x2)dx1dx2,

and because of properties of the Jacobi polynomials this simplifies to the finite sum

fij(t) =
C!

(C − i)!i!

C!

(C − j)!j!

C−2
∑

n,m=0

aAnm(t)×

∫ 1

0

∫ 1

0
xi
1(1− x1)

C−ixj
2(1− x2)

C−jTn(x1)Tm(x2)dx1dx2.

This resembles the simple formula Eq. (7) derived in the one-population case. Hence,
after including the contributions from every boundary component, the solution of the two-
population diffusion equation describing the time evolution of the density of allele fre-
quencies is a natural extension of the one-population solution. One can also generalize the
two-population case studied here, to a scenario with an arbitrary number of populations.
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MRCA Allele

Alleles in Homo Sapiens Outgroup Allele

A A

A

A’

MRCA Allele

Alleles in Homo Sapiens Outgroup Allele

A’

A AA’

FIGURE 1. Most probable histories of a diallelic locus (with alleles
A and A’). In red we denote the derived allele that arises as a mutation
since the split with the most recent common ancestor. Here we assume
that one of the alleles is identical to the orthologous base in an outgroup
species that shares a recent common ancestor, such as Pan troglodytes or
Rhesus macaque in the case of homo sapiens.

write the probability of mutation as

p(xAy → xA′y|τ) = p(xAy has diverged sinceMRCA|τ)

×
p(xAy → xA′y|xAy has diverged sinceMRCA; τ)

p(xAy has diverged sinceMRCA|xAy → xA′y; τ)
(26)

Here, x and y are the flanking nucleotides that define the context, and τ is the time of diver-
gence between the species under consideration. Eq. (26) allows to estimate the mutation
rates using genome wide data on the divergence between species. More explicitly, each
term in (26) can be computed as:

p(xAy has diverged sinceMRCA|τ) = 64× rdiv × πxAy(27)
p(xAy → xA′y|xAy has diverged sinceMRCA; τ) =

(πA;A′,ApM (A|A,A′) + πA′;A′,A(1− pM (A′|A′, A)))×
(πA;A′,ApM (A|A,A′) + πA′;A′,A(1− pM (A′|A′, A)) +

πA;B,ApM (A|A,B) + πB;B,A(1− pM (B|B,A)) +

πA;B′,ApM (A|A,B′) + πB′;B′,A(1− pM (B′|B′, A)))−1(28)
p(xAy has diverged sinceMRCA|xAy → xA′y; τ) = 1.0(29)

In Eq. (27), rdiv is the probability that two random homologous nucleotides are different,
which is estimated to be 1.57/100 between human and chimp. πxAy is the genome-wide
average frequency of trinucleotides xAy, and 64 = 43 is a normalization constant. In Eq.
(28), πw;z,w is the genome-wide frequency of trinucleotides xwy in the outgroup species
whose orthologous has polymorphisms xwy and xzy in the species under consideration.
The probability pM (w|w, z) is a shorthand for

p(xwy isMRCA|Outgroup = xwy,Alleles = xzy, xwy).

And finally, B and B′ are the two nucleotides in g, t, a, c, which are not A nor A′; i.e.
B and B′ span the complementary set to A and A′ in {g, t, a, c}. Therefore, all parame-
ters that appear in Eq. (26) can be estimated using genomic and polymorphic data, except
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p(xAy → xA′y|τ) and pM (w|w, z). The probability functions 1 − pM (w|w, z) are ex-
actly the quantities that define the probability of ancestral allele misidentification using the
outgroup base. Such probabilities also satisfy :

pM (w|w, z) = p(xwy → xzy|τ)p(xwy → xwy|τ)×
(p(xwy → xzy|τ)p(xwy → xwy|τ) +
p(xzy → xwy|τ)p(xzy → xwy|τ))−1.(30)

Here, p(xwy → xwy|τ) equals 1−
∑

z∈S p(xwy → xzy|τ), with S the set {g, t, a, c}\w.
In other words, pM (w|w, z) is approximately equal to the probability that the history rep-
resented in the left tree of Fig. 1 actually happened, given that the left and right trees
represent the most probable events.
Thus, by substituting Eq. (26) into Eq. (30), one gets a system of equations in the

unknown variables pM (w|w, z), which can be solved easily.
We estimated the probabilities of ancestral allele misidentification in humans, using the

chimp as the outgroup species. Using the human and chimp genomes, plus the EGP SNP
data, we estimated all the parameters in Eqs. (27), (28) and (29). By starting with initial
values p0M (w|w, z) = 1, one can solve Eq. (26) and recompute p1M (w|w, z) using Eq.
(30). This yields an iterative mechanism that produces a quickly convergent sequence of
probabilities pnM (w|w, z) towards a unique fixed point, solution of the system of equations.
We found that the resulting probabilities 1 − pM (w|w, z) can be broken down into CpG
and non-CpG contexts. In the non-CpG context, i.e. mutations which are not of the
type CG to TG nor CT to CA, all the probabilities 1 − pM (w|w, z) are smaller than
0.006. However, for mutations of the type CG to TG or CT to CA, the probabilities
1− pM (w|w, z) range between a maximum of 0.16 and a minimum of 0.06. This result is
very similar to the one given in [4].

3. COMPARISON OF THE DIFFERENT BOUNDARY CONDITIONS USED IN THIS STUDY

The one-population two-allele Wright-Fisher diffusion with influx of mutations can be
defined by means of the PDE

(31)
∂φ

∂t
=

1

4Ne

∂2

∂x2
[x(1− x)φ(x, t)] + 2Nuδ(x− 1/2N).

Here, Ne denotes the effective population size, N is the census population size and u the
mutation rate. The boundary conditions at x = 0 and x = 1 are absorbing, and the term
2Nuδ(x− 1/2N) denotes the source of new mutations that arise at frequency x = 1/2N
for largeN . It is very important to understand how to regularize δ(x− 1/2N) in any finite
approximation that one applies to numerically solve Eq. (31). In particular, experience
with different numerical solutions of Eq. (31) suggests that small changes in the finite
regularization of the Dirac delta might have large effects on the numerical solution of Eq.
(31).
In this section, we study the convergence properties of the finite-difference method used

in [6] and the spectral method used in this paper for the particular case of Eq. (31). Al-
though several sources of numerical error exist (e.g. either the truncated spectral expansion
or the finite-difference approximation of φ(x, t)), here we only consider the contribution
to error due to the finite regularization of δ(x− 1/2N).
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In particular, the finite regularizations of δ(x − 1/2N) that we consider here can be
described using the diffusion equation

(32) ∂φ

∂t
=

1

4Ne

∂2

∂x2
[x(1− x)φ(x, t)] + uµ(x),

with µ(x) a function of the frequency that depends on the particular choice of numerical
method. The standard diffusion in Eq. (31) is recovered when µ(x) = 2Nδ(x − 1/2N).
In general, we denote this function as
(33) µN (x) = 2Nδ(x− 1/2N).

In the case of the spectral method (see [2]) we instead use the function
(34) µk(x) = ck exp(−kx),

with
ck =

k2

1− exp(−k)− k exp(−k)
.

Here, k is a positive real number that depends monotonically on the truncation parameter
Λ. In particular, k is chosen such that the truncated polynomial approximation of Eq. (34)
is accurate enough. Thus, the limit of large Λ corresponds with the limit of large k.
In the case of the finite-difference method, one approximates φ(x, t) as a piece-wise

linear function. More precisely, if {xj}Gj=0 are the grid points on [0, 1] that we use in the
finite-difference scheme, we introduce a basis of functions {fj(x)}Gj=0 with

fj(x) = θ(x− xj−1)θ(xj+1 − x)

(

x− xj−1

xj − xj−1
θ(xj − x) +

xj+1 − x

xj+1 − xj
θ(x− xj)

)

,

for 0 < j < G,

f0(x) = θ(x1 − x)

(

x1 − x

x1 − x0
θ(x− x0)

)

,

and
fG(x) = θ(x− xG−1)

(

x− xG−1

xG − xG−1
θ(xG − x)

)

,

such that the finite-difference approximation of φ(x, t) can be written as

φ(x, t) "
j=G
∑

j=0

φtjfj(x).

Here, x0 = 0, xG = 1 and θ(x) is the Heaviside step function (defined as θ(x) = 0 for
x < 0 and θ(x) = 1 for x > 0). In Gutenkunst et al. [6] the authors use an adaptive
grid on [0, 1] that is uniform near x = 0. Therefore, for f0(x) and f1(x) we assume that
x1 − x0 = x2 − x1 = ∆, x0 = 0, and the corresponding basis functions are

f0(x) = θ(∆− x)

(

∆− x

∆
θ(x)

)

,

and
f1(x) = θ(2∆− x)

(

x

∆
θ(∆− x) +

2∆− x

∆
θ(x−∆)

)

.

Gutenkunst et al. [6] inject new mutations at each time-step by updating the value of φt1 as
(see Eq. (S9) in [6])

(35)
φt+dt
1 − φt1

dt
=

u

∆2
.
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Remark 1. Note that Gutenkunst et al. [6] write Eq. (32) using different units. In par-
ticular, they introduce a reference population size N0 with θ = 4N0u and write Eq. (32)
as

(36)
∂φ

∂τ
=

1

2ν

∂2

∂x2
[x(1− x)φ(x, τ)] +

θ

2
µ(x),

with τ = t/2N0 and ν = Ne/N0. In their notation the value of φτ1 is updated as

φτ+dτ
1 − φτ1

dτ
=

θ

2∆2
.

Updating the value of φt1, as in Eq. (35), when solving the diffusion equations is equiv-
alent to using Eq. (32) and the function

(37) µ∆(x) = c∆∆f1(x) = c∆[xθ(∆− x) + (2∆− x)θ(x−∆)θ(2∆− x)],

with c∆ = ∆−3. Observe that θ(∆−x)θ(2∆−x) = θ(∆−x) and that θ(x) denotes here
the Heaviside step function.
It is not obvious that µ∆(x) in Eq. (37) or µk(x) in Eq. (34) converge to µN (x) =

2Nδ(x− 1/2N) in the limits N → ∞, k → ∞ and ∆ → 0. Hence, it is not obvious that
the solutions associated with each finite regularization converge to the exact solution of
Eq. (31). However, in the remainder of this section we demonstrate how both approximate
solutions actually converge to the exact solution.

Proposition 1. Let φN (x, t), φk(x, t), and φ∆(x, t) be the solutions of Eq. (32) corre-
sponding to the functions µ(x) defined in Eq. (33) for φN (x, t), Eq. (34) for φk(x, t) and
Eq. (37) for φ∆(x, t). Additionally, let the initial condition be the same arbitrary density
ϕ(x) in all of the three cases:

φN (x, t = 0) = φk(x, t = 0) = φ∆(x, t = 0) = ϕ(x).

Then, iff ck in Eq. (34) is defined as

ck =
k2

1− exp(−k)− k exp(−k)
,

φk(x, t) converges to the exact solution φN (x, t) in the limits k → ∞, N → ∞ and finite
Ne. In particular,

‖ φN→∞(x, t)− φk(x, t) ‖L1≤
4Neu

k
(1 + exp(−t/2Ne)), t ≥ 0.

Similarly, iff c∆ in Eq. (37) is defined as c∆ = ∆−3, φ∆(x, t) converges to the exact
solution φN (x, t) in the limits∆ → 0, N → ∞ and finite Ne. In particular,

‖ φN→∞(x, t)− φ∆(x, t) ‖L1≤
7

3
Neu∆(1 + exp(−t/2Ne)), t ≥ 0.

Proof. The proof consists of three parts. First, we describe the solution of Eq. (32) for
an arbitrary choice of µ(x); second, we derive a general bound for the L1-norm of the
difference of two solutions associated with different choices of µ(x) (see Eq. (42)); and
third, we apply this general argument to the particular cases of φN (x, t), φk(x, t), and
φ∆(x, t) and the L1-norms

‖ φN→∞(x, t)− φk(x, t) ‖L1=

∫ 1

0
|φN→∞(x, t)− φk(x, t)|x(1− x)dx,
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and

‖ φN→∞(x, t)− φ∆(x, t) ‖L1=

∫ 1

0
|φN→∞(x, t)− φ∆(x, t)|x(1− x)dx.

Any solution of Eq. (32) can be described as the sum of a homogeneous solution and an
inhomogeneous solution. In particular, if φe,µ(x) is the steady state solution that satisfies

(38) 0 =
1

4Ne

∂2

∂x2
[x(1− x)φe,µ(x)] + uµ(x),

φµ(x, t = 0) = ϕ(x) is the initial condition, and γ(x, t) = exp(tLFP )γ(x, 0) is the
solution to the homogenous (µ(x) = 0) problem

∂γ(x, t)

∂t
=

1

4Ne

∂2

∂x2
[x(1− x)γ(x, t)] ,

then one can write the solution of Eq. (32) as
φµ(x, t) = exp(tLFP )(ϕ(x)− φe,µ(x)) + φe,µ(x).

Here, exp(tLFP ) denotes the time evolution operator, and LFP denotes the Fokker-Planck
diffusion operator. Therefore, if φµ1

(x, t) and φµ2
(x, t) are solutions of Eq. (32) associ-

ated with the functions µ1(x) and µ2(x), the difference φµ1
− φµ2

satisfies
φµ1

(x, t)− φµ2
(x, t) = exp(tLFP )(φe,µ2

(x)− φe,µ1
(x)) + φe,µ1

(x)− φe,µ2
(x).

In order to bound ‖ φµ1
− φµ2

‖L1 we apply the Minkowski inequality as follows:
‖ φµ1

(x, t)−φµ2
(x, t) ‖L1=‖ exp(tLFP )(φe,µ2

(x)−φe,µ1
(x))+φe,µ1

(x)−φe,µ2
(x) ‖L1≤

(39) ‖ exp(tLFP )(φe,µ1
(x)− φe,µ2

(x)) ‖L1 + ‖ φe,µ1
(x)− φe,µ2

(x) ‖L1 .

In our particular case (in which µ1(x) = µN→∞(x) and µ2(x) = µk(x) or µ2(x) =
µ∆(x)), φe,µ1

(x) − φe,µ2
(x) is non-negative for all x ∈ (0, 1). As the time-evolution

operator exp(tLFP ) preserves the non-negativity of the density, we can write Eq. (39) as
‖ exp(tLFP )(φe,µ1

(x)− φe,µ2
(x)) ‖L1 + ‖ φe,µ1

(x)− φe,µ2
(x) ‖L1=

∫ 1

0
exp(tLFP )(φe,µ1

(x)−φe,µ2
(x))x(1−x)dx+

∫ 1

0
(φe,µ1

(x)−φe,µ2
(x))x(1−x)dx.

The operator exp(tLFP ) is diagonal in the basis spanned by the Gegenbauer polynomials
(see Eq. (2)). In particular, we can write exp(tLFP )(φe,µ1

(x)− φe,µ2
(x)) as

exp(tLFP )(φe,µ1
(x)− φe,µ2

(x)) =
∞
∑

n=0

an exp(−t(n+ 1)(n+ 2)/4Ne)Tn(x),

with

an =

∫ 1

0
Tn(x)(φe,µ1

(x)− φe,µ2
(x))x(1− x)dx.

Now, using this expansion and the fact that T0(x) =
√
6, we can write

∫ 1

0
exp(tLFP )(φe,µ1

(x)− φe,µ2
(x))x(1− x)dx =

1√
6

∫ 1

0
exp(tLFP )(φe,µ1

(x)− φe,µ2
(x))T0(x)x(1− x)dx =

1√
6

∞
∑

n=0

an exp(−t(n+1)(n+2)/4Ne)

∫ 1

0
Tn(x)T0(x)x(1−x)dx =

a0√
6
exp(−t/2Ne).
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Therefore, if we define Iµ1,µ2
as

(40) Iµ1,µ2
=

∫ 1

0
(φe,µ1

(x)− φe,µ2
(x))x(1− x)dx,

then a0 =
√
6Iµ1,µ2

and the sum of L1-norms is

‖ exp(tLFP )(φe,µ1
(x)− φe,µ2

(x)) ‖L1 + ‖ φe,µ1
(x)− φe,µ2

(x) ‖L1=

(41) Iµ1,µ2
(1 + exp(−t/2Ne)).

Now, from Eq. (39) it follows that

(42) ‖ φµ1
(x, t)− φµ2

(x, t) ‖L1≤ Iµ1,µ2
(1 + exp(−t/2Ne)).

In order to determine the bound in Eq. (42) one needs only to evaluate the integral in
Eq. (40). This requires solving Eq. (38) to obtain a closed-form expression for φe,µ1

(x)
and φe,µ2

(x). One can solve Eq. (38) simply by integrating the equation twice
∫ x

0

∫ y

0

d2ψ(z)

dz2
dzdy = −4Neu

∫ x

0

∫ y

0
µ(z)dzdy,

ψ(x) = ψ(0) + ψ′(0)x− 4Neu

∫ x

0

∫ y

0
µ(z)dzdy,

with ψ(x) = x(1− x)φe,µ(x) and ψ′(x) = dψ/dx. We require φe,µ(x) to be finite at the
boundaries x = 0 and x = 1, i.e. ψ(0) = ψ(1) = 0. Therefore, for the particular functions
µ(x) that we consider here (Eq. (33), Eq. (34) and Eq. (37)) we find the following solutions
of Eq. (38):

(43) φe,N (x) =
4Neu

x(1− x)
[(2N − 1)x− 2N(x− 1/2N)θ(x− 1/2N)] ,

(44) φe,k(x) =
4Neu

x(1− x)

ck
k2

[x(exp(−k)− 1)− exp(−kx) + 1] .

and

φe,∆(x) =
4Neu

x(1− x)
c∆ ∆3

[

(∆−1 − 1)x−
x3

6∆3
θ(∆− x) +

(

x3

6∆3
−

x2

∆2
+

x

∆
−

1

3

)

θ(x−∆)θ(2∆− x) + (1−∆−1x)θ(x− 2∆)

]

.(45)

Note that Eq. (43) yields φe,N (x) = 4Neu/x for x > 1/2N . Thus, the limit N → ∞
of Eq. (43) corresponds with φe,N (x) = 4Neu/x for 0 < x ≤ 1. Note also that only
if ck = k2/(1 − exp(−k) − k exp(−k)) then φe,k(x) converges to 4Neu/x near x = 1.
Similarly, only if c∆ = ∆−3 then φe,∆(x) converges to 4Neu/x near x = 1.
Now we can evaluate the integral in Eq. (40) for µ1(x) = µN (x), µ2(x) = µk(x) and

ck = k2/(1− exp(−k)− k exp(−k)), as

(46)
∫ 1

0

(

4Neu

x
− φe,k(x)

)

x(1− x)dx = 4Neu
1 + k/2 + (1− exp(k))/k

1 + k − exp(k)
,

which in the limit of large k converges to

(47) IµN→∞,µk
=

4Neu

k
.
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Similarly, for µ1(x) = µN (x), µ2(x) = µ∆(x) and c∆ = ∆−3, we find

(48) IµN→∞,µ∆
=

∫ 1

0

(

4Neu

x
− φe,∆(x)

)

x(1− x)dx =
7

3
Neu∆.

By using Eq. (47) and Eq. (48) in Eq. (41) we obtain the bounds that are stated in
Proposition 1. !
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