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ABSTRACT Although linking number is an effective to-
pological invariant for describing supercoiled DNA, it is inade-
quate for the additional interwinding in catenated or knotted
DNA. We explain how the two-bridge theory of Schubert pro-
vides a powerful yet simple method for analyzing these forms
by associating them with two integral invariants, a and A, that
measure their geometric complexity. These integers can either
be determined graphically or computed with the aid of stan-
dard tables, and they allow tabulation of all possible stereoiso-
mers of a given knot or catenane. A complete classification can
then be made via a simple theorem. Stereoisomers of repre-
sentative knots and catenanes are tabulated for easy reference.
There are four stereoisomers of regularly interlocked caten-
anes that we designate right-handed parallel, right-handed an-
tiparallel, left-handed parallel, and left-handed antiparallel
according to the helical intertwining of the rings. The biologi-
cal processes that form catenanes-replication, recombina-
tion, and topoisomerase action-predict distinctly different
isomers.

All natural populations of DNA rings are to some extent in-
terlocked as catenanes. The fraction is small for most viral
and plasmid DNAs, but in some instances catenanes are the
predominant species (1, 2). The ubiquity of catenanes arises
from the multiplicity of processes that produce them. Repli-
cation or recombination of DNA rings in purified enzyme
systems usually generates catenanes as the sole or major
product (3-6). Moreover, all cells contain enzymes called
topoisomerases that can form and resolve catenanes (7).

Interest in catenanes stems not just from their widespread
occurrence; knowledge of their structure has provided criti-
cal insight into the mechanism of the processes that generate
them. They have been important in establishing how the two
types of topoisomerases pass DNA segments through each
other, in suggesting how topological problems at the termi-
nation of DNA replication can be bypassed, and in showing
how recombination enzymes in a unique fashion synapse and
rearrange sites extensively intertwined by supercoiling (5, 8-
11).
The need for rigorous classification of catenanes has be-

come more pressing with improved analytical techniques.
Agarose gel electrophoresis resolves even complex mixtures
of dimeric DNA catenanes into discrete bands according to
the number of interlocks (11). An improved electron micro-
scopic technique for viewing DNA has recently provided the
first reliable method for determining the complete structure
of knots and catenanes (10). What is not widely known
among biologists are the topologically distinct ways rings
can be interlocked.
The formulation for the linking number of two curves by

White in 1969 (12) has been of great value in analyzing DNA

structure. The linking number of closed circular duplex
DNA is the sum of the writhing of the DNA axis in space and
the twisting of either strand of the double helix about this
axis (13, 14). Unlike linking number, neither of these fea-
tures need be invariant or integral for a given DNA mole-
cule. Linking number, however, is not very useful for de-
scribing the additional interwinding of DNA strands in cate-
nanes, because many topologically different catenanes have
the same linking number (15).

Fortunately the two-bridge description of curves by Schu-
bert (16) distinguishes in a simple way the stereoisomers of
many catenanes by associating them with two integers, a
and P3. We show how a catenane can be diagrammed in the
Schubert two-bridge fashion that presents a and P graphical-
ly. This procedure may then be used to find a and 3 for the
stereoisomers of the catenane with orientations reversed or
reflected in a mirror. Via a simple theorem, the identity of
these curves can be analyzed for a complete classification.
We determine two important corollaries concerning a and ,3
that can be used to tabulate all stereoisomers of a given type
of catenane. A table of representative examples is presented
for reference apart from the mathematics. We describe an
alternative to two-bridge diagrams, called grid diagrams, that
are easier to construct once a and /3 are known. Finally, we
apply the two-bridge treatment to DNA knots.
Catenane Description in the Two-Bridge Fashion. We begin

by applying the theory of two-bridge links to two kinds of
DNA catenanes. First, we classify all possible pairs of
closed circular DNAs interlocked with a regular right-hand-
ed or left-handed intertwining. In the bottom row of Figs. 1
and 2, single and double interlinks are illustrated. Second,
we present the case of figure-8 catenanes that contain an
entrapped supercoil (Fig. 3). These two cases represent the
only types of links between DNA rings that have been estab-
lished thus far (1, 10).

In the middle row of Figs. 1-3, these DNAs are drawn in
the two-bridge fashion. The reason for the name two-bridge
is easily explained. In Fig. lb, the black curve crosses over,
or bridges, the grey curve on the left side of the figure, and
the grey curve bridges the black curve on the right side. The
horizontal parts of the curves are the bridges. In Fig. 2b, the
black curve bridges the grey and black curves a total of three
times, as does the grey curve. In Fig. 3b, the grey and black
curves each bridge the curves seven times. In each case,
there are two and only two bridges.

Schubert has shown that associated with any two-bridge
link are integers a and 3 with the properties that 1X1 < a,
their greatest common divisor is one, a is even, and (3 is odd
(16). a is one plus the number of times either bridge crosses
over the curves. Thus, a is 2 for the single interlock, 4 for the
double, and 8 for the figure-8 catenane. For two curves that
interlock in the regular way n times, a is equal to 2n-i.e.,
the number of intermolecular nodes.
To describe the determination of A, we must introduce the

concepts of orientation and oriented crossings. An orienta-
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FIG. 1. Representations of singly interlocked regular dimeric catenanes. The black and grey curves represent interlocked DNA rings. The
catenanes are shown in three topologically equivalent representations: the grid form (top row), the Schubert two-bridge form (middle row), and
the manner standard in biology (bottom row). The orientation of curves is shown by arrows. The underlying of crossing segments is interrupted
in two-bridge and standard representations. This convention is not followed in grid plots, where underlying portions of curves are dashed. The
numbers are assigned to crossings according to the Schubert scheme.

tion of a curve is a choice of direction in which to travel
along the curve. If an oriented curve crosses itself or another
oriented curve, the crossing or node may be given a sign
according to the convention shown in Fig. 4. This is the com-
mon mathematical convention and the one used in some (10)
but not all (14) previous discussions of DNA topology. The
orientation of linked curves can be the same or opposite and
each of these forms has a mirror image. Thus, four two-
bridge curves are generated for each of the three catenanes
considered. The next step in determining /3 is to number the
bridge crossings as follows. Move along the bridge in the
direction of its orientation. Once the far end of the bridge is
reached, back up, and number sequentially each crossing 1,
2, 3, . . . with sign dictated by the convention. Finally, start
on one bridge and proceed along the curve in the direction of
its orientation until it crosses under the other bridge for the
first time. The signed number attached to that crossing is /.

If the orientation of one of the curves is reversed, then its
bridge crossings are counted in reverse order and /3 is
changed to a - /3 in absolute value. Furthermore, since ori-
entation has been reversed, the sign of the crossing is also
changed. Thus, our first corollary is that under a reversal of

Grid g- Am

a d

orientation, f3 is changed to -(a - O). In Figs. 1-3, the ca-
tenanes in h and k have the reverse orientation of those in b
and e, respectively. If the entire catenane is reflected in a
mirror, then all crossing signs are changed but the orienta-
tions are preserved. Thus, /3 is changed to -13 and this is our
second corollary. In Figs. 1-3, b and e are mirror images, as
are h and k.

In summary, the four catenanes obtained from a given ca-
tenane type have the same a and the possible A3 values are /3,
-/3, -(a - 13), and a - 13. These are designated as model,
mirror, reversed, and mirror-reversed catenanes, respective-
ly.

Classification of the Illustrated Catenanes. We now classify
our catenanes using the theorem proven by Schubert (16).
Let Cal and Ca2 be two catenanes with the same value of a,
and let /3' be the /3 of Cal and /32 the / of Ca2. Then Cal and
Ca2 can be deformed one into the other without breakage if,
and only if, either 3 /P2 (mod 2a) or P13/2 1 (mod 2a).
Because a number mod 2a is the remainder after division by
2a, two numbers are equal mod 2a if their difference is divis-
ible by 2a. Thus, /31 /32 (mod 2a) if 2a divides /31 - /32, and
/31/32 1 (mod 2a) if 2a divides 81(2 - 1.
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FIG. 2. Representations of doubly interlocked regular dimeric catenanes. The curves are drawn as described in Fig. 1 except, for clarity,
only the 13th value of bridge crossings are shown in the middle row.
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FIG. 3. Representations of figure-8 catenanes. The curves are drawn as described in Fig. 1, except only the 13th value of bridge crossings are
shown in the middle row and none are shown in the top row.

To determine whether two catenanes are equivalent-i.e.,
whether one may be continuously deformed into the other-
we need only to determine if any of the pairwise products of
the numbers /3, -,3, -(a - /3), and a - A3 is equal to 1 (mod
2a). There are four such products: _/32, -/3(a - /3), fl(a -

,3), and -(a - p)2. The last can be simplified mod 2a to _/32
as follows. Since ,/ is an integer, 2a/3 0 (mod 2a); since a is
even for catenanes, a/2 is integral and a2 = 0 (mod 2a) be-
cause a2 = 2a(a/2). Thus the table of disjoint products is:

model doubly interlocked catenane, a = 4, (3 = 1, and a - 83
= 3. All four stereoisomers are independent because -,82,
8(a - /3), and -,B(a - (B) equal -1, -3, and 3, respectively,
which are not congruent to 1 (mod 8).

For the general case of regular helically interlocked caten-
anes, a = 2n and /3 = 1 for the model catenane. The product
table is:

1 -1 -(2n- 1) 2n - 1

(mirror
(model) (mirror) (reversed) reversed)

(3 -(3 -(a-fl) a-f8

(model) (3 _p2 -,8(a - /3) P(a - ()
(mirror) -/3 f8(a - (8) -P(a - 3)

(reversed) -(a - 13) -P2

We need then only decide if _p2, /8(a - /), or -/3(a - /3) is
equal to 1 (mod 2a).
We apply these criteria to our special cases. For singly

interlocked catenanes, a = 2, /3 and (a - /3) = 1, and -,/ and
-(a - /3) = -1. Therefore, mirror reversal of singly inter-
locked rings does not change the value of /. This equiva-
lence can be seen in Fig. 1 because a simple rotation about a

horizontal diameter converts c into 1 and f into i. Because
.p2 is not congruent to 1 (mod 4), there are two classes of

singly linked catenanes and they are mirror images. For the

( -)

/

(+)

FIG. 4. Sign convention for crossings of oriented curves. The
bold arrows are the tangent vectors for two oriented curves, and the
curved dashed arrows show the direction the vector on top must be
rotated (angle <1800) to be congruent with the underlying vector.
Clockwise and counterclockwise motion define (-) and (+) cross-

ings, respectively.

1 -1 -(2n - 1) 2n - 1

-1 2n - 1 -(2n - 1)

-(2n - 1) -1

Since for n > 1, -1, -(2n - 1), and 2n - 1 are not congruent
to 1 (mod 4n), all four classes are independent.
Thus, there are exactly four classes of regularly inter-

locked catenanes. We can describe these analogously to the
classes of DNA double helices, because the two rings heli-
cally intertwine. The helix can be left-handed or right-hand-
ed, and the orientation of the two rings can be parallel or
antiparallel. The resulting four classes are right-handed par-
allel, left-handed parallel, right-handed antiparallel, and left-
handed antiparallel, as shown in the bottom row of Fig. 2.
Right-handed parallel and left-handed antiparallel catenanes
have only positive nodes, whereas left-handed parallel and
right-handed antiparallel catenanes have negative nodes.
One might have expected only two classes of catenanes cor-
responding to right- and left-handed or positive and negative
nodes, but because handedness and node sign assort inde-
pendently, there are four.

It is important to note that the various processes for gener-
ating catenanes predict different structures. Catenanes re-
sulting at the termination of DNA replication (11) preserve
the positive nodes and the right-handed intertwining of the
double helix and are therefore parallel. During intramolecu-
lar recombination, catenanes that result from the intertwin-
ing of substrate plectonemic supercoils (8) must have nega-
tive nodes and yet be right-handed, as are such supercoils,
and therefore they must be antiparallel. Escherichia coli to-
poisomerase I generates a racemic mixture of duplex DNA
knots (10) and should produce a mixture of catenanes. Race-
mic catenanes should also result from cyclization of linear
DNA in the presence of DNA rings (17).

Strikingly, there are only two stereoisomers of figure-8 ca-
tenanes (Fig. 3) even though they are more elaborate than
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regular catenanes. For figure-8 catenanes, a = 8 and the pos-
sible values of /3 are 3 for the model, -3 for the mirror, -5
for the reversed, and 5 for the mirror reversed. The possible
products are then -9, -15, and 15. Now, -15 1 (mod 16).
Hence, by Schubert's theorem, the 13 = 3 and 13 = -5 cate-
nanes are equivalent, as are their mirror images. This means
that reversal of orientation of one of the two DNA rings does
not alter the catenane, but that mirror images are not super-
imposable. We note that the intermolecular linking number
must be zero, because linking number changes sign under
reversal of one of the curves (12). Since separation of the
two rings of a figure-8 catenane requires a double-strand
break, a pair of DNA rings that are topologically linked can
nonetheless have a linking number of zero.

Classification of Additional Examples. To classify cate-
nanes, it is possible to bypass the Schubert two-bridge draw-
ings and to compute a and 13 with the aid of a standard table.
Rolfsen's useful table (15) illustrates a single unoriented ex-

ample of many catenanes along with a descriptive notation
developed by Conway (18). The Conway notation is a single
integer for curves that can be drawn in the two-bridge fash-
ion; this includes all catenanes in the Rolfsen table that have
up to 7 nodes and many more complex links. The continued
fraction of the Conway integer is equal to -13/a and the con-
tinued fraction of a number abc is

1

1
a +

b +
C

A negative sign results because Conway used the opposite
sign convention from ours. The complete set of allowed val-
ues of /3 can then be calculated from the corollaries above
and the Schubert classification theorem applied. Because
the stereoisomers of curves are not given in Rolfsen's table,
we have compiled in Table 1 the values of a, 13, the Conway
notation, and the notation used by Rolfsen for all possible
stereoisomers of some common catenanes. Comparison of
Table 1 with the Rolfsen table will make it easier to classify
additional examples.

Grid plots. The Schubert two-bridge representations are

valuable for a topological description of a catenane but can

be difficult to construct. An alternative graphical presenta-
tion, called the grid or rectangular plot, is much easier to
draw. The grid cannot be used to determine the value of a

and /3, because its construction requires them. The grids are

useful, however, in perceiving the topology of a curve and its
relationship to other curves. Examples of grids of our cate-
nane types are shown in the top row of Figs. 1-3.
We explain step-by-step how to construct grids for doubly

interlocked (Fig. 2a) and figure-8 (Fig. 3a) catenanes. For
the former, a = 4 and = 1; for the latter, a = 8 and = 3.
Start with a rectangle whose vertical sides are divided into a
segments and whose horizontal sides are divided into /3 seg-
ments. Begin at the lower left-hand corner and draw a
straight line to the 13th dividing point on the right vertical
wall. Think of the rectangle as a solid plate with the line seg-
ment on top. Next, draw a line connecting the Pth dividing
point on the right vertical wall to the 213th divisor on the left
wall on the back side of the rectangle. Repeat this procedure
until the upper left hand corner or the upper horizontal top is
reached. In the a = 4 and = 1 model, the upper left-hand
corner is reached in four steps. Now, connect this corner to
the lower left hand corner by an arc. In the a = 8 and 83 = 3
model, after the first two steps you are searching for the 9th
dividing point on the right-hand wall, but there are only 8
segments, so that the top wall is reached first. The next step
is to count down the right-hand wall one notch to divider
point number 7 and draw on the back side of the plate a line

Table 1. Stereoisomers of DNA catenanes and knots

Rolfsen* Conway*
notation Nodest a /3 notation Fig.

Catenanes
22 2+ 2 +1 1 c and I
22 2- 2 -1 2 1fand i
2n2 2n+ 2n +1 2c
2n2 2n- 2n -1 2n 2f
2n2 2n- 2n -(2n - 1) 2i
2n2 2n+ 2n +(2n - 1) 21
52 3+,2- 8 +3 3candi
52 3-, 2+ 8 -3 212 3fand 1

6+ 10 +3
62 6- 10 -3 33
62 6- 10 -7

6+ 10 +7
362 6+ 12 +5
362 6- 12 -5 222
362 4-, 2+ 12 -7
362 4+,2- 12 +7

Knots
(2m + 1)1 (2m + 1)+ 2m + 1 +1 5
(2m + 1)1 (2m + 1)- 2m + 1 -1 2m + 1

41 2+, 2- 5 +3 22
52 5+ 7 +3
52 5- 7 -3 32
61 4+, 2- 9 +5
61 4-, 2+ 9 -5 42
62 4+, 2- 11 +3
62 4-, 2+ 11 -3 312
63 3-, 3+ 13 +5 2112

*The first number in the notation used by Rolfsen (15) is the number
of nodes in the simplest representation of the curve. The super-
script is the number of catenated rings, and the subscript distin-
guishes curves with the same number of nodes. Because the curves
in Rolfsen's table are not oriented, stereoisomers have the same
Rolfsen notation. The Conway notation is given for an oriented
version of a curve depicted in Rolfsen's table. For amphichiral
knots, the -13 value is not listed because it is equivalent to the +13
knot. n = integer > 1; m = integer > 0.
tNode composition in simplest representation of the curve.

from where you left off at the top wall to this point. The
same procedure is now used going down and back up this
grid. The procedure is always used a total of /3 times to reach
the upper left-hand corner, which is then connected to the
lower left-hand corner by an arc. The final step is to repeat
the process for the grey curve of both catenanes but starting
at the lower right-hand corner and on the back of the plate.
The relationship between grid and Schubert presentations

is as follows. The solid parts of the curves on the top side of
the grid correspond to the parts of the curves above the
bridges. The dashed parts of the curves on the back side of
the grid correspond to the parts of the curves below the
bridges, and the connecting arcs correspond to the bridges.
Bridge crossings correspond to the point where a curve
changes sides of the rectangular plate. The handedness of a
curve is more apparent in the grid plots. The grid, two-
bridge, and standard representations are topologically equiv-
alent; a grid constructed using a model for DNA, such as
tubing, can be easily converted to the standard form by re-
moving the rectangular plate support.

Knots. DNA knots are less well-studied than catenanes
but are also important products of recombination in vitro (5),
and topoisomerases readily tie and untie knots (7, 19, 20).
Knotted DNA has been identified in bacteriophage capsids
(21) and in preparations of bacterial plasmids.

Linking number is undefined for knots. Fortunately, the
Schubert theory also applies to knots, because single curves

Biochemistry: White and Cozzarelli



3326 Biochemistry: White and Cozzarelli

a. Grid b. Two-bridge c. Standard

a= 3, P=1

FIG. 5. Representations of a trefoil knot. See Fig. 1 legend for
explanation.

can be drawn in the two-bridge fashion. For knots, both a

and P are odd. We present just two examples, trefoil and
figure-8 knots, because the treatment is analogous to that
used for catenanes. For our model trefoil or 3-noded knot, 83
= 1 and a = 3. Since only a single curve is involved, the
curve must cover all dividing points of both the left and right
walls of the grid model (Fig. Sa). In the Schubert representa-
tion, the same curve serves as both bridges (Fig. 5b). Rever-
sal of orientation does not change 8 for a knot, but reflection
changes the sign of 83. 3 is then -1 for the mirror image of the
model trefoil. Mod 6, -1-1 -1. Thus, there are two, and
only two, trefoil stereoisomers.
For the 4-noded or figure-8 knot, a = 5 and = 3. How-

ever, mod 10, 3 -3 1. Thus, surprisingly, the mirror im-
ages are superimposable and there is only one 4-noded knot;
i.e., it is amphichiral. Additional examples of stereoisomers
of some common knots are indexed in Table 1, and Rolfsen's
table illustrates a single stereoisomer of knots that contain
ten or fewer nodes. As in the case of catenanes, the contin-
ued fraction of the Conway number is -,B/a, with one com-
plication. If the numerator of the fraction is odd, it is indeed
equal to -(3. However, if the numerator is even, then 83 is the
numerator minus a or its equivalent via the Schubert theo-
rem. P is always the smallest positive odd integer, which rep-

resents the knot type. For example, for the 41 knot, the con-

tinued fraction of 22 is 2/5, so that = 2 - 5 = -3. For the
52 knot, 3 is shown to be -3 as follows. The continued frac-
tion of 32 is 2/7 and 2 - 7 = -5, which in turn equals -3 in
the Schubert system because -3--5 = 15 1 (mod 14).

We are indebted to M. Krasnow for stimulating discussions and
for the nomenclature for catenane stereoisomers. This work was
supported by National Institutes of Health Grants GM 31655 and
GM 31657.
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