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Purpose: Pentoxifylline (PTX), a methylxanthine phosphodiesterase inhibitor reduces super-
oxide anions responsible for DNA apoptosis. The null hypothesis was that PTX was equally
effective in reducing damage to specific cell genes. The objective was to determine the DNA
integrity of the BRCA1 tumor suppressor gene and the c-myc proto-oncogene after PTX.
Methods: Sperm (64 samples, 4 patients) were preincubated in either 0 (control) or 3.6 mM
PTX (30 min), washed and incubated for 4 h at either 37 or 40◦C heat shock activation.
Single primer polymerase chain reactions (PCR) were carried out on lysed sperm targeting
either BRCA1 exon 11 or c-myc exon 1. Control single-stranded DNA (ssDNA) were stained
with 9 µM Hoechst 33342 (blue) while PTX-treated ssDNA were stained with SYBR Gold
(green). Nytran membrane discs with control ssDNA were hybridized to PTX-derived ssDNA.
Fluorescent images stored in a microarray design were analyzed using ANOVA and Students’
t-test for (P < 0.05) significance.
Results: BRCA1 integrity was higher with PTX pretreatment (93.3 + 10.4 vs. control 50.5 +
9.2; mean+ SEM). In contrast, there was no difference in c-myc integrity (56.8+ 9.0 vs. 41.7+
6.4). Sense or antisense primers gave similar DNA fragmentation results.
Conclusions: The data showed PTX pretreatment protected BRCA1 but not c-myc suggesting
that PTX did not equally protect different cell genes. A possible explanation was that proto-
oncogenes had more fragile sites. The study involved the DNA disc chip assay to assess separate
PCR-amplified sense and antisense strands. The results suggested that both strands were
equally affected by PTX pretreatment.

KEY WORDS: Comparative genomic hybridization; pentoxifylline; proto-oncogene; spermatozoa; tu-
mor suppressor gene.

INTRODUCTION

Pentoxifylline (PTX), a methylxanthine phosphodi-
esterase inhibitor, increases cyclic adenosine 3′:5′

monophosphate (cAMP) intracellularly (1,2), re-
duces superoxide anions and inhibit tumor-necrosis
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factor—alpha (TNF-alpha) responsible for DNA
fragmentation and apoptosis or programmed cell
death (3–7). PTX has been used to stimulate sperm
motility and improve fertilization (2). Furthermore,
PTX has been used in clinical procedures to scav-
enge reactive oxygen species and reduce lipid per-
oxidation associated sperm membrane damage and
DNA apoptosis (4,8–10). While most studies focus
on the assessment of the entire genome for DNA
damage, it is uncertain if the integrity of each spe-
cific gene is equally affected by PTX-mediated inhi-
bition of apoptosis. The null hypothesis was that PTX
was equally effective in reducing damage to specific
cell genes. The objective was to determine the DNA
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integrity of the BRCA1 tumor suppressor gene and
the c-myc proto-oncogene in sperm after PTX pre-
treatment and followed by heat shock activation. The
information obtained would help to stimulate further
studies examining the differential effect of chemical
agents on the integrity of different genes.

MATERIALS AND METHODS

Specimen Preparation

The sperm cells were from male partners of infertile
couples attending an assisted reproductive technolo-
gies program. The spermiograms of the male patients
were considered normal with normal concentration,
total motility and normal morphology as assessed
through basic semen analyses. Data from patients that
involved epididymal sperm aspiration or donor sperm
were not included in the study. A total of 64 washed
specimens from four cases were evaluated. This study
that was based on the multiple cell comet assay was
approved by the Loma Linda University Institutional
Review Board.

Each sperm specimen was divided into two por-
tions and washed using either the swim-up (control)
or pentoxifylline wash procedure (11). The swim-up
procedure consisted of layering a 1 mL volume of
HEPES-based human tubal fluid culture medium with
5% human serum albumin (mHTF, Irvine Scientific,
Santa Ana, CA) over on top of 1 mL of semen in
a centrifuge tube. The tubes were placed in a 37◦C
waterbath for 30 min and the bottom layer of semen
pipetted out and disposed. The remaining tubes of cul-
ture medium containing the motile sperm were cen-
trifuged (300g, 10 min), resuspended in 0.4 mL mHTF
and labeled as the swim-up group.

The pentoxifylline wash procedure involved mixing
1 mL of each semen specimen with 1 mL of pentoxi-
fylline (Sigma Chemicals, St. Louis, MO) dissolved in
mHTF medium to obtain a 3.6 mM final concentra-
tion. Each mixture was incubated for 30 min at 37◦C
in air before being layered over the 90:45% silane col-
loid layers (Isolate, Irvine Scientific, Santa Ana, CA)
in a centrifuge tube and centrifuged at 300g for
10 min (11). The bottom 90% layer was removed,
mixed with an equal volume of mHTF medium and
centrifuged (300g, 10 min). Each pellet of sperm was
resuspended in 0.4 mL mHTF medium and labeled as
the pentoxifylline group.

A mild heat shock treatment was applied to each
tube of swim-up or pentoxifylline-treated sperm. This
consisted of incubating the tubes of sperm at 40◦C in

air for 4 h (12). A second set of washed sperm was kept
at 37◦C in air for 4 h as the unheated control. After
4 h, the sperm cells were stored frozen at −30◦C for
several weeks and thawed for the DNA assays. The
integrity of the tumor-suppressor gene, BRCA1 and
the proto-oncogene, c-myc, were assessed through a
novel DNA disc chip assay based on comparative ge-
nomic hybridization (described below). These genes
were selected based on the opposing functions of
BRCA1 and c-myc genes, and on the experience with
polymerase chain reaction (PCR) primers for these
genes at this laboratory.

The DNA Disc Chip Assay

The DNA disc chip assay procedure was as follows:
The frozen heat-treated and control sperm cells were
thawed at room temperature for 10 min. The sperm
were centrifuged at 3000g for 1 min to remove the
culture media. Each resultant pellet was resuspended
in 4◦C alkaline lysis buffer (1% N-Lauroylsarcosine,
1.0 M Tris–HCl, pH 7.5, 0.5 M EDTA, 0.3 M mer-
captoethanol, pH adjusted to >10 with sodium hy-
droxide pellets) for 20 min with periodic vortexing to
release the sperm DNA. The tubes of sperm DNA
were then placed in a PCR thermal cycler and heated
at 94◦C for 5 min to denature the DNA into sin-
gle strands similar to the “hot start” PCR protocol.
Single-stranded DNA (ssDNA) were generated using
the single primer PCR procedure. The PCR amplifi-
cations of sperm DNA involved either the sense or
antisense primer targeting either the protein-coding
region of BRCA1 (13) at exon 11 (434 base pair, bp)
or the regulatory region (14) of c-myc exon 1 (256 bp).

The DNA staining procedure was carried out in dif-
fuse lighting or darkened room. The control (swim-up
or pentoxifylline-treated at 37◦C) sperm ssDNA (de-
rived from sense or antisense primers) were stained
in 9 µM bisbenzimide (Hoechst 33342, Sigma Chem-
icals, St. Louis, MO) for 5 min and centrifuge-washed
twice to remove excess stain (3000g for 1 min). The
ssDNA (derived from sense or antisense) from heat
shocked sperm (swim-up or pentoxifylline-treated at
40◦C) were stained in 1:10,000 diluted SYBR Gold
stock stain (Molecular Probes, Eugene, OR) for 5 min
and excess stain removed as recommended by the
manufacturer. It was unnecessary to adjust DNA con-
centration in the tubes due to the matched control-test
design and saturation of the positive-charged minia-
ture disc.

The tiny round discs used in the DNA disc chip as-
say were made by pressing a 2 mm Acupunch biopsy
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Fig. 1. A DNA disc chip assay showing bright fluorescent BRCA1
exon 11 single-stranded DNA (ssDNA) of both sense and antisense
strands in the hybridized membrane discs (2 mm diameter) asso-
ciated with DNA integrity in sperm cells pretreated with 3.6 mM
pentoxifylline (PTX) and heat shock treated at 40◦C for 4 h. In
contrast, the ssDNA of BRCA1 after swimup processing (control)
and the ssDNA of c-myc exon 1 of sperm exhibited low fluores-
cence suggesting DNA fragmentation and apoptosis. All control
matching ssDNA embedded on the discs were analyzed and found
to have similar fluorescence. Each digitized image was reduced by
80%, cut and pasted on to an image of a multiwell tray to form a
microarray of images for storage, comparison, analysis, and presen-
tation purposes.

punch pen (Acuderm, Ft. Lauderdale, FL) into the
Nytran (Schleicher & Schuell, Keene, NH) membrane
sheet and using a plastic stylet to expel the round
discs. The size of the disc was chosen to fit the 40×
magnification of the fluorescent microscope used in
this lab. The discs could be attached into the wells of
a microtiter plate to process greater volume of sam-
ples, similar to a microarray design. For this study,
each disc was held using a pair of microforceps and
first dipped into the tube of control (37◦C) ssDNA
(Hoechst 33342, blue fluorescence) for a few seconds
and blotting off the excess. Then, the disc was dropped
into the tube of test (40◦C) ssDNA (Sybr Gold, green-
golden fluorescence). This process was repeated sev-
eral times to obtain replicated data points.

Each tube with submerged discs was allowed to hy-
bridize for 10–20 s. Several discs were removed using
a pair of microforceps, and lined up on a glass slide
to form a DNA chip. Each glass slide with the DNA
discs was examined using an ultraviolet (UV) epi-
fluorescent microscope at 40×magnification. The flu-
orescent images were captured by placing an inexpen-
sive QuickCam Pro camera (Logitech, Fremont, CA)
over the microscope eyepiece and saving the 640 ×
480 pixels images to hard disk (Fig. 1). For compari-
son purposes, the color images were computer-cut and
pasted on to a photo of a 50-well microtiter plate in a
microarray design using the Microsoft Paint program.
The images were converted to grey-scale and the pixel
intensity of each disc analyzed using Paint Shop Pro 6

software (Jasc Software, Eden Prairie, MN). Greater
damage of ssDNA was observed as a lower pixel in-
tensity (green-golden fluorescent) of the disc due to
lack of pairing or mismatch with the control ssDNA.

Statistical Analysis

The pixel intensity of each fluorescent disc con-
taining hybridized DNA was obtained from the com-
puter imaging software and expressed as mean±SEM
(standard error of the mean). The pixel intensity of
each disc from heat-treated (40◦C) sperm DNA were
matched or paired with the pixel intensity of corre-
sponding internal calibration control (37◦C) sperm.
Analysis of variance (ANOVA) followed by signifi-
cance testing of the means using the Students’ t-test
statistic were used. A value of P < 0.05 was consid-
ered significant.

RESULTS

The sperm specimens used for the present study
(Table I) were considered normal in accordance with
the values set by the 1999 fourth edition of the World
Health Organization (WHO) Semen Analysis Man-
ual (15). There were no remarkable differences be-
tween the postwash motilities of the control swim-up
from semen group and the PTX pretreated group.

The integrity of the BRCA1 gene was almost
twofold greater (P < 0.05) in sperm with PTX pre-
treatment (93.3 ± 10.4 vs. 50.5 ± 9.2) when com-
pared with control sperm (Table II). In contrast,
c-myc (56.8± 9.0 vs. 41.7 ± 6.4) gene integrity was
similar for both the PTX pretreatment and control
groups. Interestingly, the antisense strand of BRCA1
appeared to be less stable than the sense strand while
the opposite was observed for the c-myc gene. Sta-
tistically, the sense and antisense data were consid-
ered similar in terms of intensity of DNA fragmen-
tation. Blank Nytran membrane discs were used in

Table I. Basic Sperm Parameters and Motilities After Processing
Through Either the Swim-Up from Semen (Control) or Pentoxi-

fylline (3.6 mM) Treatment

Results WHO normal
Parameter (mean ± SEM) reference (15)

Concentration (million/mL) 49.3 ± 1.0 >20 million/mL
Total motility (%) 62.8 ± 5.2 >50% motile
Strict normal morphology (%) 11.3 ± 1.8 >4% normal
Postwash total motility

Swim-up from semen (%) 82.3 ± 7.5
Pentoxifylline treatment (%) 85.5 ± 4.4
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Table II. A Comparative Genomic Hybridization DNA Disc Chip Assay of the Tumor Suppressor Gene, BRCA1, and
the Proto-Oncogene, c-myc, in Sperm Cells with and Without Pentoxifylline (3.6 mM) Pretreatment

Pixel intensities of fluorescent discs (mean + SEM)

Antisense ssDNA of heated Sense ssDNA of heated Cumulative data of
sperm paired with control sperm paired with control heated ssDNA paired

Treatment N sense ssDNA on disc antisense ssDNA on disc with control ssDNA

BRCA1 exon 11
Swim-up control 8 50.5 ± 18.7 50.0 ± 10.7 50.5 ± 9.2
Pentoxifylline 8 86.5 ± 8.8a 100.1 ± 21.8a 93.3 ± 10.4a

Negative control 4 n/a n/a 25.3 ± 1.5
c-myc exon 1

Swim-up control 8 47.0 ± 11.5 34.7 ± 11.8 41.7 ± 6.4
Pentoxifylline 8 71.0 ± 14.0 42.6 ± 8.2 56.8 ± 9.0
Negative swim-up 4 n/a n/a 25.6 ± 3.0

aDifferent from control. P < 0.05.

the determination of background fluorescence for the
negative controls and did not have sense or antisense
data.

DISCUSSION

The methylxanthine phosphodiesterase inhibitor,
PTX [1-9[5-oxohexyl]-3-7-dimethylxanthine), has
been reported to stimulate sperm motility (1,2)
by increasing intracellular cyclic adenosine 3′:5′

monophosphate (cAMP) and by reducing superoxide
anion and reactive oxygen species (ROS), which dam-
age DNA (9,10). Pretreatment of asthenozoospermic
or slow moving sperm with PTX has been shown to im-
prove in vitro fertilization of oocytes (2). Consistent
with the known protective effect of PTX on DNA,
sperm pretreated with PTX also showed less DNA
damage in specific genes after heat shock treatment.
Specifically, the tumor suppressor gene, BRCA1, re-
mained relatively intact in PTX pretreated sperm
when compared with untreated sperm.

However, the proto-oncogene, c-myc, was not pro-
tected by PTX pretreatment. The results suggested
that PTX did not act with equal efficacy in protecting
different genes, in this case, genes involved with cell
proliferation and growth. One possible explanation
was that proto-oncogenes might have more fragile
sites that are prone to damage (16) or that the
DNA repair mechanisms are absent or slow reacting
for proto-oncogenes. The c-myc proto-oncogene
is located on the long arm of Chromosome 8. The
proto-oncogenes include c-myc, c-fos and c-jun,
and are nuclear proto-oncogenes involved in sperm
function (17), and mediate the action of growth
factors during cell proliferation (18). The proto-
oncogenes code for nuclear proteins that regulate

DNA replication and RNA transcription during
increased cell proliferation and differentiation (19).
Tumor suppressor genes such as BRCA1 (20–26)
oppose the proliferation and growth directives of
proto-oncogenes. The BRCA1 gene is located on the
long arm of Chromosome 17 and mutations of this
gene are associated with breast, ovarian, prostate,
and colon cancers (27).

The mechanism of PTX action involves inhibiting
apoptosis or programmed cell death characterized by
DNA fragmentation (28). PTX has been reported to
interfere with lipid signaling of cytokines and inhibit
tumor-necrosis factor—alpha (TNF-alpha) which is
linked to the Caspase 3 enzyme for apoptosis (6).
However, the results showing differences in PTX ac-
tion on DNA integrity depending on gene type sug-
gest an alternate apoptotic pathway unaffected by
PTX. The differential protective effect of PTX on
specific genes is important and suggest that apoptosis
studies that focus on selected genes may miss impor-
tant DNA alterations in other parts of the genome.

In this study, the DNA disc chip assay was utilized to
assess the integrity of the DNA fragments produced
by PCR amplification. The assay was simple and cost-
effective for gene analysis and permitted small lab-
oratories to take part in the exciting fields of com-
parative genomic hybridization (29) and microarray
analysis (30). The principle of this fluorescent assay
was based on undamaged test DNA hybridizing with
control DNA located on a membrane disc similar to
the Southern blot (31). Intact test DNA exhibits max-
imal fluorescence in contrast to damaged or mutated
test DNA that fails to hybridize efficiently and thus
exhibit reduced fluorescence. Drawbacks of the as-
say included the requirement of a fluorescent micro-
scope, a computer, and a digital camera. More studies
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are needed to expand the capabilities of the assay to
include RNA expression analysis.
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