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Abstract. The soliton model of charge and energy transport in biological macromolecules is used
to suggest one of the possible mechanisms for electromagnetic radiation influence on biological
systems. The influence of the electromagnetic field (EMF) on molecular solitons is studied both
analytically and numerically. Numerical simulations prove the stability of solitons for fields of large
amplitude, and allow the study of emission of phonons. It is shown that in the spectra of biological
effects of radiation there are two characteristic frequencies of EMFs, one of which is connected with
the most intensive energy absorption and emission of sound waves by the soliton, and the other of
which is connected with the soliton photodissociation into a delocalized state.

1. Introduction

The problem of the influence of electromagnetic radiation on biological systems is
not only one of the most important but also one of the most complex problems for
several branches of science, including medicine, biology, physics, radiobiology,
environmental sciences, etc., both from an experimental and from a theoretical
point of view [1, 2]. There are several reasons for this. The ever increasing use
of electricity in everyday life, in technical appliances and technologies, the con-
ventional electrical methods of medical diagnosis and treatment and the search for
new, alternative methods to traditional medicine, constitute only a few examples.
Experimental knowledge in this area has grown rapidly over the last two decades
and in some respects it has stimulated theoretical models [3] and practical appli-
cations [4, 5]. However, despite that much research has already been done in this
area, there are still many open questions about the mechanisms by which electro-
magnetic fields (EMFs) affect biological systems, either from the point of view of
biological organisms or their populations as a whole, or at the cellular or molecular
level. There is evidence that the biological effects of EMFs can be both beneficial
[5] and detrimental (see, e.g., [6, 7] and references cited therein). Furthermore, the
degree of such effects depends not only on the exposure dose and on the wave-
length of the electromagnetic radiation, which can be approximately controlled by
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20 L. BRIZHIK ET AL.

physical means, but also, to a great extent, on the particular individual, involving
psycho-physiological factors, electromagnetic sensitivity and hypersensitivity [7].

The range of effects of EMFs spans the whole hierarchy of biological processes,
from the direct influence on ion transport and molecular dynamics (in response to
electrical stimulation or as a means of signal or energy transfer along a molecu-
lar chain), to the basic biochemical and biophysical processes, and finally, to the
metabolism of whole cells and organisms. The complexity of this problem is the
result of the corresponding complexity of biological systems and of the fundamen-
tal role played by electromagnetic interactions in the structure-function relations in
biological organisms [8].

In the present paper we consider only one aspect of the problem, namely, the
influence of an external electromagnetic field on the energy and charge transport
processes within the frame of the Davydov/Scott model [9]. This mechanism for
the biological effects of radiation was first suggested in [10] and studied in more
detail in [11, 12]. In Section 2 a brief presentation of the model is given, in Sec-
tions 3 and 4, respectively, the results of analytical and numerical investigations
are presented, and in Section 5 we discuss the results obtained.

2. Davydov’s soliton in the presence of external EMF

From the physical point of view all biological organisms are open dissipative sys-
tems and their metabolism is connected with the exchange of energy and matter
with the environment. Many biological processes are connected with the storage
and spatial transfer of energy and charge in cells. The primary mechanism for
the production of the energy needed in biological processes is the hydrolysis of
adenosine triphosphate (ATP) into adenosine diphosphate (ADP) which takes place
with the release of free energy. The standard value of this energy quantum is only
approximately 16 times larger than the energy of thermal vibrations at normal
physiological conditions. The exceptional effectiveness and reliability of energy
and charge transport over long distances cannot be explained in the frame of con-
ventional linear approaches and in the 70’s a nonlinear soliton mechanism was
suggested [14, 9]. According to it, the free energy released in the hydrolysis of ATP
is stored in the so-called amide I vibration, essentially a stretching of the C–O bond
of the peptide group. This vibrational excited state becomes autolocalized due to
its interaction with the local deformation of the relatively soft polypeptide chain
formed by weak hydrogen bonds alongα-helical protein molecules. A similar
mechanism can be relevant for electron transport, for instance, during oxidative
phosphorylation processes when the ADP is converted into the ATP. Such charge
transfer takes place along theα-helical regions of the enzyme-macromolecular
complexes participating in the reaction, and in [15, 16] the bisoliton model of
charge transport in biological systems was proposed which is based on the follow-
ing ideas. The peptide group possesses constant dipole momentum, d = 3.5 Debye
[17], which can keep an extra electron in the bound state with the binding energy
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INFLUENCE OF ELECTROMAGNETIC RADIATION 21

0.9 eV [18]. In such a state the electron wavefunction is extended over the two
nearest peptide groups and the periodic potential of the peptide dipole momenta in
the polypeptide chain of theα-helix splits the electron on-site energy level into a
conducting band of width 4J , J being the overlap electron integral [19]. As was
mentioned above, the polypeptide chain is formed by soft hydrogen bonds and
the electron-phonon coupling in it is rather strong, hence, the interaction of band
electrons with the local distortions of the chain is important. This interaction leads
to the self-trapping or autolocalization of electrons in the electrosoliton states [20,
9] and to the binding of two isolated electrosolitons into a bisoliton [15, 16].

In the presence of radiation, both the amide-type soliton and the electrosoliton
can change their properties or even become unstable and dissociate. Here we study
the influence of an external alternating electromagnetic field on the energy and
charge transport processes within the simplest model of an isolated polypeptide
chain at zero temperature. We assume that at the initial time the chain is in the
ground soliton state formed by a quasiparticle (an amide I vibration or an electron)
interacting with longitudinal displacements of peptide groups from their equilib-
rium positions. Such a system is described by the Fröhlich-type Hamiltonian:

H =
∑
k

E(k)B+k Bk +
1√
N

∑
k,q

χ(q)B+k Bk−q(bq + b+−q)+
∑
q

h̄�qb
+
q bq .

(2.1)

HereB+k (Bk) are the creation (annihilation) operators for a quasiparticle with
wavenumberk. For the case of an amide I vibration these operators satisfy com-
mutator rules, while for an electron they satisfy anticommutator rules. Since in the
present paper we consider only one quasiparticle in the chain (electron or exciton),
the master equations are the same in the both cases, as will be shown below. The
operatorsb+q (bq) are the creation (annihilation) Bose-operators for a phonon with
wavenumberq and

E(k) = E0+ 4J sin2 ka

2
(2.2)

is the dispersion law of a quasiparticle in the band with the bottom energyE0 and
width 4J , J being the resonance exchange energy for the quasiparticle between
the nearest neighbors,�q is the frequency of acoustic phonons, andχ(q) is the
electron-phonon coupling function:

�q = 2

√
w

M

∣∣∣sin
qa

2

∣∣∣ , χ(q) = 2iχ

√
h̄

2M�q
sin(qa), (2.3)

whereM is a unit cell mass, i.e. the average mass of a peptide group,w is the
elasticity coefficient of the chain, anda is the lattice constant. According to the
Born-Karman periodic boundary conditions, which we will use, the wave numbers
in (2.1) arek = 2πn/Na, n = 0,±1, . . . ± (N − 2)/2, N/2, with N being the
number of sites in the chain.
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22 L. BRIZHIK ET AL.

The operator,V (t), of quasiparticle interaction with an external alternating
EMF, EE(t),

EE(t) = 1

2
[ EEe−iωt+i EQ ER + c.c.] (2.4)

can be written in the general form

V (t) = 1

2

∑
k

e−iωt EE EdkB+k Bk + h.c. (2.5)

where Edk is the effective dipole moment and determined below. It is taken into
account in (2.5) that the EMF wavevector| EQ| is small as compared with the recip-
rocal lattice vectorπ/a.

In particular, in the coordinate representation, the operator of electron interac-
tion with the EMF is proportional to the product of the vector-potential of EMF
and electron momentum operator

V (t) = − ieh̄
mc
EA(t) E∇, EA(t) = − ic

ω
EEe−iωt+i EQEr + c.c. (2.6)

In the quantized field representation

9+(Er) =
∑
k

φ∗k (Er)B+k , 9(Er) =
∑
k

φk(Er)Bk (2.7)

φk(Er) = 1√
N

∑
n

χ(x − na, y, z)eikna

with χ(x − na, y, z) being the Wannier wavefunction of an electron localized on
then-th peptide group, the operator (2.6) takes the form (2.5) in which

Edk = i Ed sin(ka). (2.8)

Here vectorEd is parallel to the chain axisx and is determined by the electron mass,
m and charge,e by the expression

Ed = Ej eh̄λ
mωa

(2.9)

where Ej is a unit vector along the chain, andλ is determined by the overlap of
electron Wannier functions on neighbouring peptide groups.

In the case of amide I vibrations the interaction operator can be written in the
dipole approximation

V (t) = −EE(t) ED (2.10)
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INFLUENCE OF ELECTROMAGNETIC RADIATION 23

where the dipole moment of the systemED can be expanded in the Taylor series
with respect to the normal vibrational coordinatesQk = (Bk + B+−k)/

√
2 of the

amide I vibrations. The zero term in this expansion is the static dipole moment
of peptide groups. In the interaction operator this term can be neglected since it
can be taken into account by a phase transformation of the wave function, and,
hence, it does not affect optical transitions. The first term, linear with respect to the
operatorsB+k (Bk), describes the absorption (emission) of the light quantum with
creation (annihilation) of one vibrational quantum, and is responsible for the finite
radiation lifetime of the vibrational state (delocalized or self-trapped) [21]. The
next term in the expansion of the dipole moment,ED, quadratic with respect to the
operatorsBk, B

+
k , is responsible for the electrooptical anharmonicity of the system

and leads to the appearance of the overtones, i.e., the lines at double frequencies,
in the absorption spectra. And indeed, such overtones are present in the IR spectra
of peptide molecules [22]. Here we consider the EMF of frequenciesω less than
the frequency of amide I vibrations, and therefore, can keep only the term propor-
tional toB+k Bk and neglect the linear terms and terms which are proportional to
BkB−k andB+k B

+
−k in this quadratic part of the dipole momentum. This leads to the

expression (2.5) in whichEd(k) is the expansion coefficient:

Ed(k) = ∂2 ED
∂Qk∂Q

∗
−k

which has the dimension of a dipole moment. As was mentioned above, this effec-
tive dipole moment is a characteristic of the optical anharmonicity of the vibration
and is determined by the integral intensity of amide I overtones in the emission and
absorption spectra of biological macromolecules.

Thus, we have shown that for both types of quasiparticles, electron and amide
I vibrations, the operator of the quasiparticle interaction with the external EMF
which is responsible for the intraband transitions, has the form (2.5) with the
assumption that the EMF frequency is less than the frequencies of quasiparticle
interband transitions.

The wavefunction of the system,|9(t)〉, satisfies the Schrödinger equation

ih̄
∂|9(t)〉
∂t

= [H + V (t)]|9(t)〉, (2.11)

and can be expanded over the complete set of stationary states of the Hamiltonian
(2.1)

|9(t)〉 =
∑
j

aj (t) |9j(t)〉. (2.12)

The perturbationV (t) is assumed to be adiabatically included at the initial time
moment andaj (0) = δj,s . We assume that the initial state|9s〉 corresponds to the
ground state of an extra quasiparticle in the chain described by the Hamiltonian
(2.1) and at strong enough quasiparticle-phonon coupling can be described [9, 21]
by the wavefunction:
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24 L. BRIZHIK ET AL.

|9s(t)〉 = |9e(t)〉 |9ph(t)〉, 〈9s(t)|9s(t)〉 = 1, (2.13)

where

|9e(t)〉 =
∑
k

9k(t)B
+
k |0〉e,

∑
k

|9k(t)|2 = 1, (2.14)

|9ph(t)〉 = U(t) |0〉ph, (2.15)

and the unitary operator

U(t) = exp

{
1√
N

∑
q

[βq(t)b+q − β∗qbq ]
}

(2.16)

describes the rearrangement of the lattice due to its interaction with the quasipar-
ticle. The coefficients9k(t) andβq(t) satisfy the selfconsistent set of nonlinear
equations and describe the autolocalized soliton-like state of the quasiparticle [9,
21, 23, 24].

The coefficientsaj (t) in Equation (2.12) determine the probability of a quantum
transition from the initial ground state|9s〉 into the state|9j 〉, j 6= s and are
expressed via the nondiagonal matrix elements of the perturbation,

aj (t) = 1

ih̄

∫ t

0
〈9j(t ′)|V (t ′)|9s(t ′)〉dt ′. (2.17)

The total probability (per unit time) of a quantum transition of the system due to
the influence of the EMF is given by the following expression

Ps = 2

h̄2<
∫ t

−∞
dt ′〈9s(t)|V +(t)e−i Hh̄ (t−t ′)V (t ′)|9s(t ′)〉. (2.18)

The corresponding calculations are similar to the case of soliton photodissocia-
tion [10, 11] and one can show that the probability of soliton photodissociation is
described by a sum of Gaussian functions:

Ps =
√

2π

h̄B

∑
k

| EE EDsk|2 exp

{
−(ω − ωk)

2

2B2

}
, (2.19)

where the photodissociation resonance frequency,ωk, and the width of Gaussian,
B, are determined below:

h̄ωk = χ4

Jw2
+ h̄

2k2

2m∗
, B2 = 12.6χ2Vaκ

2

π3h̄wa
, (2.20)

and the dipole momentum for the electrosoliton transition into the free band elec-
tron state with the wavenumberk, EDsk, is:

EDsk = i
Ed

2
√
N

π(ka + iκ)√
2κ coshπak2κ

. (2.21)
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INFLUENCE OF ELECTROMAGNETIC RADIATION 25

It follows from (2.21) that the most probable transition is that of the electrosoli-
ton into the delocalized band state with zero wavenumberk = 0. Therefore, the
soliton photodissociation probability (2.19) has a resonance,ωdiss, dependent on
the field frequency:

ωdiss = ωk=0 = χ4

h̄Jw2
. (2.22)

The diagonal elements of the perturbation can be taken into account by the
renormalization of the wavefunctions, hence, they do not affect the transition prob-
ability. However, the diagonal terms lead not only to shifts in the energy levels, as is
usual for linear systems, but also to nontrivial effects in the dynamical properties of
the soliton. After the renormalization of the wavefunction we obtain the following
system of equations for the quasiparticle and phonon variables [12, 13]:

ih̄
∂9k

∂t
− [31+ E(k)+ Vk(t)]9k − 1

N

∑
q

χ(q)(βq + β∗−q)9k−q = 0, (2.23)

−ih̄ ∂βq
∂t
+ h̄�qβq = −χ∗(q)

∑
k

9∗k9s−q, (2.24)

where

31 = 1

N

∑
q

[
h̄�q|βq |2− 1

2

(
ih̄
∂βq

∂t
β∗q + c.c.

)]
, (2.25)

Vk(t) = 1

2
[( EE Edk)e−iωt + c.c.]. (2.26)

In the absence of perturbation the system of nonlinear equations (2.23)–(2.24)
describes the autolocalized (self-trapped) states and has been widely investigated
both analytically and numerically (see, e.g. [21, 23, 24, 28, 29] and references
therein). Usually these equations are written in site representation, in terms of
variables with a clear physical meaning, namely, the probability amplitudes of a
quasiparticle on then-th site,9n, and for the displacements of chain sites from their
equilibrium positions,un. In this case the integro-differential equations (2.23)–
(2.24) can be transformed either to the system of nonlinear differential-difference
equations which are suitable for numerical calculations, or, in the continuum ap-
proximation, to partial differential equations which allow for an analytical analysis.
In the next section we study the corresponding system of equations in the pres-
ence of electromagnetic field analytically, following the Mitropolsky-Bogolyubov-
Krylov perturbation theory [25]. The results of numerical calculations are given in
Section 4.

3. Analytical Analysis of Soliton Dynamics

For the analytical investigation of the Equations (2.23)–(2.24) let us introduce the
functions
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26 L. BRIZHIK ET AL.

ψ(x, t) = 1√
L

∑
k

9k(t)e
ikx, u(x, t) = 1

N

∑
q

(
h̄

2M�q

)1/2

(βq + β∗−q)eiqx

(3.1)

of continuous variablex. One can see that the latter functions are periodical, i.e.
ψ(x + L, t) = ψ(x, t) andu(x + L, t) = u(x, t). From the first equation in (3.1)
we have:

9k(t) = 1√
L

∫ L/2
−L/2ψ(x)e

−ikxdx, (3.2)

whereL = aN is the length of the chain.
If 9k andβq are assumed to be essentially nonzero only for small wave num-

bers, we can use the long-wave approximation:

E(k) ' E0+ h̄2k2

2m∗ , �q ' Va|q|, χ(q) ' 2iχ
√

h̄
2M�q

qa Edk ' i Ed ak, (3.3)

wherem∗ = h̄2/2Ja2 is the quasiparticle effective mass andVa = a√w/M is the
sound velocity in the chain.

Then, taking into account (3.1)–(3.3), we can rewrite the Equations (2.23)–
(2.24) in the following form:

ih̄
∂ψ

∂t
+ h̄2

2m∗
∂2ψ

∂x2
− [3+ 2χρ]ψ = −ig(t)a ∂ψ

∂x
, (3.4)

∂2ρ

∂t2
− V 2

a

∂2ρ

∂x2
= 2χaV 2

a

w

∂2|ψ(x, t)|2
∂x2

, (3.5)

whereρ(x, t) is the chain deformation,

ρ(x, t) = ∂u(x, t)

∂x
(3.6)

and the functiong(t) accounts for influence of the EMF:

g(t) = AJ cos(ωt), A = 1

J
EE Ed. (3.7)

In the absence of perturbation, wheng = 0, Equations (3.4)–(3.5) admit the
soliton-like solution:

ρs(x, t) = − 2χa

w(1− s2)
|ψs(x, t)|2, (3.8)

ψs(x, t) = κ
√

1− s2

√
G

exp{i[k(x − ζ(t))+ ϑ(t)]}
coshκ[x − ζ(t)] , (3.9)

where

ζ(t) = ζ0+ h̄k

m∗
t, ϑ(t) = h̄2

2m∗
(k2+ κ2)t, (3.10)
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INFLUENCE OF ELECTROMAGNETIC RADIATION 27

G = 4maχ2

h̄2w
, s = h̄k

m∗Va
, κ = G

2(1− s2)
. (3.11)

This solution describes a stationary autolocalized state of a quasiparticle which
moves along the chain with constant velocityV = h̄k/m∗. More generally, the
substitution of the solution of Equation (3.5), in the form given by Equation (3.8),
into (3.4) transforms the latter into the nonlinear Schrödinger equation whose pe-
riodic solution is expressed via elliptic functions. But at−L/2 < x − V t ≤ L/2,
for long enough chain, the periodic solution can be reduced to the expression (3.9).

The weak influence of the electromagnetic field on the soliton can be accounted
for within the adiabatic perturbation theory [25, 26, 27], according to which the
solution of Equations (3.4)–(3.5) reads as

ρ(x, t) = − 2χa

w(1− s2)
|ψ(x, t)|2 + εr1(x, t), (3.12)

ψ(x, t) = ψs(x, t) + εf1(x, t). (3.13)

Hereε is a small parameter andψs(x, t) is the soliton wavefunction (3.9) and its
time dependent parameters,κ, ζ, k, andϑ obey the following equations:

κ̇ = 0, ζ̇ = h̄k

m∗
+ εa

h̄
g(t),

k̇ = −ε2χG

h̄

∫ ∞
−∞

r1(x, t) tanh[κ(x − ζ )]|ψs |2dx,

ϑ̇ = h̄2

2m∗
(k2+ κ2)− ε2χG

h̄κ

∫ ∞
−∞

r1{1− κ(x − ζ ) tanh[κ(x − ζ )]}|ψs|2dx.
(3.14)

The first order correction of the deformation in the adiabatic approximation is
governed by the equation:

∂2r1

∂t2
− V 2

a

∂2r1

∂x2
= −2χa

w
ζ̈
∂|ψs |2
∂x

(3.15)

with the initial conditionr1(t →−∞) = 0, and its expression is

r1 = − χa

πwVa

∫ t

−∞
dt ′ ζ̈ (t ′)

∫ ∞
−∞

dq
sin[Vaq(t − t ′)]

q∫ ∞
−∞

dx′ eiq(x−x
′) ∂|ψs(x′, t ′)|2

dx′
. (3.16)

From (3.14) we find that the soliton width is not changed by the weak field:

jobp303.tex; 2/04/1999; 21:02; p.9



28 L. BRIZHIK ET AL.

κ = 1

2
G (3.17)

and obtain an equation for the soliton center of mass motion,

m∗ζ̈ (t)+
∫ ∞

0
ζ̈ (t − τ)K(τ)dτ = F0 cos(ωt), (3.18)

where

F0 = m∗ωa
h̄
EE Ed, (3.19)

K(τ) = −4χ2aκ

µV 2
a

d

dτ

κVaτ cosh(κVaτ)− sinh(κVaτ)

sinh3(κVaτ)
. (3.20)

Equation (3.18) describes the motion of a particle in the presence of an external
periodical force with amplitudeF0 and the kernel (3.20) describes the retarda-
tion effects in the deformation which accompanies the soliton. The solution which
describes the stationary motion of the driven soliton has the form:

ζ̈ (t) = F0
md(ω)

cos[ωt − φ(ω)], (3.21)

where the dynamical mass of the soliton,md(ω) and the phase shift due the soliton
acceleration under the external force,φ, are:

md(ω) =
√
[m∗ + µ1(ω)]2+ µ2

2(ω), φ = arcsin
µ2(ω)

md(ω)
. (3.22)

where,

µ1(ω) = π

2κVa

∫ ∞
0

x4dx[
x2 −

(
ω
ω0

)2
]

sinh2 x

,

µ2(ω) = 4χ2aκ

πwV 2
a

(
ω

ω0

)2

sinh−2 ω

ω0
, (3.23)

ω0 ≡ 2κVa
π

. (3.24)

The analysis of expressions (3.22)–(3.23) shows that the dynamical mass,md(ω),
depends on the parameter,δ,

δ = JG2

m∗V 2
a

(3.25)

which is the ratio of the soliton binding energy to the kinetic energy of the free
band quasiparticle moving with sound velocity.

It follows from (3.22)–(3.23) that, in the low frequency limit, when the inequal-
ity ω� ω0 is fulfilled, the phase shiftφ tends to zero, and the soliton behaves as a
classical Newtonian particle in a slowly oscillating external field with a dynamical
mass,md , equal to the effective mass of the soliton in the absence of the field,
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INFLUENCE OF ELECTROMAGNETIC RADIATION 29

Figure 1. Frequency dependence of the dynamic mass,md (3.22), at small values of the
parameterδ determined in Equation (3.25). The solid line is forδ = 0.01, the dashed line
is for δ = 0.1, the dot-dash line forδ = 0.5 and the double dot-dash line forδ = 1.0.

md ≈ m∗ + 8m∗χ4a2

3h̄2wV 2
a

. (3.26)

At high frequencies of the external field, whenω � ω0, the phase shift also
tends to zero. However, in this case, the deformation cannot follow the compara-
tively fast electron motion, and the dynamical mass approaches the mass of a free
band quasiparticle,

md ≈ m∗. (3.27)

This analysis of the frequency dependence of the dynamical mass is confirmed
by numerical calculations of Equations (3.22)–(3.23) for various values ofδ as
shown in Figures 1–2.

The deformational system is described by the first-order correction (3.16) which
can be rewritten as the sum of two terms:

r1 = − χa

wVa

∫ ∞
0
ζ̈ (t − τ){|ψs(ζ+)|2− |ψs(ζ−)|2}dτ, (3.28)

where

ξ± = x − ζ(t)± Vaτ
(

1± v̄(τ )
Va

)
≈ x − ζ(t)± Vaτ,

v̄(τ ) = ζ(t)− ζ(t − τ)
τ

,
v̄(τ )

Va
� 1. (3.29)
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30 L. BRIZHIK ET AL.

Figure 2. The frequency dependence of the dynamic mass at large values ofδ. The solid line
is for δ = 5, the dashed line is forδ = 10 and the dot-dash line forδ = 50.

Equation (3.28) asymptotically describes two sound waves generated by the oscil-
lating soliton motion which move in opposite directions:

r1(x, t) =
{
A(ω) cos[ω(t − (x − z)/Va)− φ], x − z→∞,
−A(ω) cos[ω(x − z)q/Va)− φ], x − z→−∞ (3.30)

where

A(ω) = χma2ω2

h̄mdwV 2
a ω0

sinh−1

(
ω

ω0

)
EE Ed. (3.31)

The energy flow absorbed by an electrosoliton from the electromagnetic field
per field oscillation period,T = 2π/ω, is equal to the following value:

ET = dE

dt
= − ω

2πVaω2
0

(
eElλχa

md(ω)

)2

sinh−2 ω

ω0
, (3.32)

whereEl is the EMF amplitude projection on the chain axis and the dynamical mass
is determined in (3.22). Substituting its asymptotics at low and high frequencies
(3.27), (3.28) in (3.32), we find that this flow is proportional to the electromagnetic
field frequency at low frequencies, and decreases exponentially at high frequencies:

ET ∝
{
ω, ω � ω0,

ω3 exp(−γω), ω � ω0
(3.33)

attaining the maximum absolute value at

ωdyn = 1.3ω0. (3.34)
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The energy absorbed from an EMF by an electrosoliton results in the emission of
phonons, and, according to (3.32), this process is characterized by the dynamic
resonance frequency (3.34).

4. Numerical Experiments

The analytical studies of Equations (2.23)–(2.24) performed in the previous section
are based on several assumptions, including the long-wave (continuum) approxi-
mation. Although the continuum perturbative analysis developed in Section 3 has
proved to be successful and nontrivial effects of the influence of EMS on the soliton
dynamics were predicted, the range of applicability of this method to a nonlinear
system remains an open question. The direct numerical investigation of the corre-
sponding equations avoids the use of approximations and is thus very important.
To integrate Equations (2.23)–(2.24) numerically let us rewrite them in the site
representation using the unitary transformation

9n(t) = 1√
N

∑
k

9k(t)e
ikan, un(t) = 1

N

∑
q

(
h̄

2M�q

)1/2

(βq + β∗−q)eiqna.
(4.1)

In this representation, taking into account (2.2), (2.3) and (2.8), one can rewrite
equations (2.23)–(2.24) in the following form

ih̄
∂9n

∂t
= 39n − J (9n−1+9n+1)+ χ(un+1 − un−1)9n

−ig(t)(9n+1−9n−1), (4.2)

M
d2un

dt2
= χ(|9n+1|2− |9n−1|2)+ w(un+1+ un−1 − 2un). (4.3)

Here3 = 31+ E0, un is the displacement of then-th molecule, andg(t) is given
by Equation (3.7).

It is easy to see that the Equations (3.4)–(3.5) are the continuum approximations
of the discrete equations (4.2)–(4.3) and that the connection between the corre-
sponding variables is given by the relations9n(t) = √aψ(an, t) andun(t) =
u(an, t) which follow from comparison of (3.1) with (4.1).

Below, we present the results of the numerical calculations of Equations (4.2)–
(4.3) for a chain with 50 sites with periodic boundary conditions. For the initial
state we chose the exact minimum energy one-quantum state of the unperturbed
Davydov model [24, 28, 29]. Although the problem of the numerical values of the
parameters of the Hamiltonian (2.1) is still open at present, there are approximate
estimates for the resonance energy and electron-phonon coupling constant for the
charge transport processes in peptides. The values of parameters we use here are
those applied to the amide I vibrations in anα-helix [23]; J = 1.55 · 10−22J ,
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Figure 3. Variation with time of the probability of a quasiparticle excitation in siten, |9n|2 in
an external field of amplitudeA = 0.9 and frequencyω = 0.5. Here and in the figures below
amplitude,A is dimensionless and given by Equation (3.7), and the frequency,ω, is in ps−1.

Figure 4. Variation with time of the probability of a quasiparticle excitation in siten, |9n|2,
in an external field of amplitudeA = 0.9 and frequencyω = 0.5 in a small time interval.

χ = 62pN , w = 39N/m, M = 5.7 · 10−25 kg, a = 4.5 · 10−10 m which give the
following values:δ = 50,ωdyn = 1.1 THz,ωdiss = 38 GHz.

Figure 5. The time dependence of the difference of the neighboring molecule displacements
un−1 − un at the same values of the field parameters as in Figures 3–4.

jobp303.tex; 2/04/1999; 21:02; p.14



INFLUENCE OF ELECTROMAGNETIC RADIATION 33

Figure 6. Variation with time of the probability of a quasiparticle excitation in siten, |9n|2
in an external field of amplitudeA = 0.9 and frequencyω = 1.5.

Figure 7. The time dependence of energy distributionEn between the different statesn for
the same values of the field parameters as in Figure 6.

The results of numerical calculations of Equations (4.2)–(4.3) are represented
in Figures 3–15. The amplitude of the external EMF,A is given in dimensionless
units as it is determined by Equation (3.7), and frequencyω is in ps−1.

Figure 8. Variation with time of the probability of a quasiparticle excitation in siten, |9n|2,
in an external field of amplitudeA = 0.9 and frequencyω = 2.5.
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Figure 9. The time dependence of energy distributionEn between the different statesn for
the same values of the field parameters as in Figure 8.

Figure 10. Variation with time of the probability of a quasiparticle excitation in siten, |9n|2,
in an external field of amplitudeA = 0.9 and frequencyω = 10.

The dynamics of a soliton in a field of amplitudeA = 0.9 and frequency
ω = 0.5 is displayed in Figure 3 and confirms soliton stability even at such a large
value of perturbation. The oscillations of the soliton c.o.m. around the unperturbed
position in the middle of the chain and the emission of two sound waves which
move in opposite directions, are clearly seen at the shorter time interval represented

Figure 11. The time dependence of the difference of the neighboring molecule displacements
un−1 − un at the same values of the field parameters as in Figure 10.
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Figure 12. Variation with time of the probability of a quasiparticle excitation in siten, |9n|2,
in an external field of amplitudeA = 1.2 and frequencyω = 0.56.

Figure 13. The time dependence of energy distributionEn between the different statesn for
the same values of the field parameters as in Figure 12.

Figure 14. Variation with time of the probability of an amide I excitation in siten, |9n|2, in
an external field of amplitudeA = 50 and frequencyω = 100.

Figure 15. The time dependence of the difference of the neighboring molecule displacements
un−1 − un at the same values of the field parameters as in Figure 14.
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on Figures 4–5. The interference of the two sound waves in Figure 5 is due to
the periodic boundary conditions. Worth mentioning is also the very weak time
dependence of the soliton amplitude which can be seen in Figures 3–5. As the
field frequency increases, the amplitude of soliton c.o.m. oscillations decreases, as
shown in Figure 6 and there appears a small probability for the vibration to occupy
the excited delocalized energy level corresponding to the energy absorbed from
the field, as is seen in Figures 7, forω = 1.5. With a further frequency increase
the second delocalized level (overtone) can be partially occupied as it is shown on
Figures 8–9 forω = 2.5. If the frequency of the field is too large, the overtones lie
above the allowed energy levels. The emission of sound waves increases with fre-
quency while the latter is less or comparable to the dynamic resonance frequency.
When the field frequency greatly exceeds the dynamic resonance frequency, the
sound emission decreases and becomes very similar to that observed at small fre-
quencies of the external field, as shown in Figures 10–11 forω = 10. Although
the amplitude of the oscillations is very small and almost invisible in Figure 10
for the excitation probability, the presence of oscillations can be distinctly seen
in the site displacements in the form of emitted sound waves (see Figure 11). At
this frequency, the amide I vibration is in the ground localized state and there is
no possibility for its transition into an excited delocalized state (we do not present
here the corresponding figure for the occupation probability of energy levels since
it is of trivial form).

Increasing the EMF amplitude further, the adiabatic approximation breaks down
and cannot be used to describe the dynamics. The amplitude of the soliton de-
creases significantly and tails appear, as it is shown on Figure 12 forA = 1.2
andω = 0.56. The probability of higher level occupation increases with time (see
Figure 13) and some features of stochasticity arise in the system. However, from a
physical point of view, even under fields of such large amplitude the autolocalized
state is stable for long enough to travel along the chain length.

In Figures 14–15 we show the behaviour of the soliton at very high frequencies.
At ω = 100 the chain deformation cannot follow the very fast oscillations of the
‘light’ amide I subsystem, except at the very beginning when the soliton is pushed
from its equilibrium position by the external field and with some retardation the
deformation wave was pushed over (we have chosen here a large value ofA,
namelyA = 50, to make the physical picture more striking). This dynamics agrees
well with the analytical asymptotic analysis of the soliton dynamical mass at large
frequencies given above in Section 3.

5. Discussion

Comparing the analytical and numerical results, we conclude that they coincide to a
great extent at small amplitudes of perturbation, and complement each other at the
intermediate and large amplitudes. The numerical analysis has proved the validity
of adiabatic perturbation for rather strong perturbations and the exceptional stabil-
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ity of the soliton as an autolocalized state in the presence of external EMF. While
the oscillatory character of soliton motion can be well described by the analytical
approach, the emission of sound waves is much easier to study within by numerical
simulations, and especially the interference of sound waves with one another due
to the periodic boundary conditions used in the numeric method. In biological
systems these finite size effects will be present because of sound reflection from
the polypeptide ends.

We note that the electromagnetic radiation is shown to have a specific influence
on electrosolitons which, we believe, could be responsible for the observed effects
of EMF on charge transport in biological systems. Thus, this theory predicts that
these effects can only be generated and sustained in biologically active states. And
indeed, it has been shown that EMFs have a weak stimulatory effect on resting cells
but a profound effect on partially activated cells [30].

As it was shown in Section 3, the effects of EMFs on electrosolitons is par-
ticularly intense at two characteristic frequencies,ωdyn andωdiss, determined by
Equations (3.21) and (3.34), respectively, but in a qualitatively different manner.
The dynamic resonant frequency of the field,ωdyn, is connected with the absorption
by electrosolitons of energy from the field and the following generation of acoustic
waves. This process is the most intense at the field frequencyωdyn = 1.3ω0 deter-
mined by the characteristic time scale of the retardation effects which, in turn, is
determined as the ratio of the soliton width to the sound velocity (see (3.21)). The
generation of acoustic waves in the polypeptide chain can result not only in the
obvious local heating of the system, but also in sound waves that propagate along
the α-helix as in a channel carrying some additional information. Moreover, the
generation of sound can qualitatively change some functional processes connected
with conformal states of macromolecules or their fragments, since electromagnetic
radiation of the corresponding frequencies causes the oscillations of electrosolitons
including oscillations of chain distortion. In this respect it is worth mentioning the
function of calcium channels, namely, their opening and closing, which depends
on the channel conformation, and to cite the experimental results about the strong
influence of EMF on calcium balance [31, 32].

Another type of EMF bioeffect takes place atω ≈ ωdiss, namely, when the
frequency of electromagnetic radiation corresponds to the splitting energy of the
electrosoliton level from the band bottom, i.e. when the quantum transition of
the electrosoliton into the delocalized band state occurs. As a result, the electro-
magnetic radiation of the corresponding frequencies can, with finite probability,
destroy the electrosoliton completely. In this case the coherent charge transport in
the system becomes far less effective, if possible at all.

It is worth mentioning here that the soliton mechanism is not the sole possible
mechanism for charge and energy transport in biosystems. In such rich structures as
biosystems, under different conditions and for different biological ‘aims’, different
mechanisms can complement one another. But whenever this occurs inα-helical
molecules, it is necessary to take into account that these molecules are formed by
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weak hydrogen bonds, hence, the electron-phonon interactions are essential and
cannot be neglected. In low-dimensional systems the electron-phonon coupling
under certain conditions can result in the autolocalization of quasiparticles, and
this is the case when the soliton mechanism arises. Among other advantages of this
mechanism (see [9], e.g.) there is the fact that molecular solitons carry the informa-
tion from one place of the cell to another without losing or changing it, since they
propagate in the system without spreading or changing shape and velocity, even
after collisions with other solitons or thermal phonons.

In conclusion, we note that the present paper describes the main but not all of
the features of EMF bioeffects in the framework of the soliton concept for energy
and charge transport in biosystems. As was mentioned in Section 4, for our calcu-
lations we started from an initial state in the form of the exact minimum energy
one-quantum state of the unperturbed Davydov model. This state describes the au-
tolocalized soliton state and our approach corresponds to the adiabatic switching of
the perturbation and it is investigated here only in the case of zero soliton velocity.
It should also be interesting to investigate the dependence of these results on initial
conditions and soliton velocity. Here we should mention also that charge transport
in biological systems can be provided by bisolitons which are bound states of two
electrosolitons with opposite spins [15, 16] and one can expect that the spectrum
of bisoliton interaction with electromagnetic radiation to be richer than that of a
single electrosoliton.

Another limitation of the present study is that we have considered the system at
zero temperature, while all biological processes take place at physiological tem-
peratures. Temperature has significant influence on soliton state properties [24,
33] and it can lead not only to a temperature dependence of the absorption line
characteristics in (2.15), but also to more significant effects on soliton dynamics
under EMF.

Finally, the single band model (2.1) is oversimplified for the description of
charge and energy transport alongα-helical protein molecules. There are three
chains of peptide groups in theα-helical structure and, therefore, there are three en-
ergetic bands for quasiparticles. With allowance for helical structure, soliton states
become more complicated [34, 35, 36, 37] which will lead to more complex spectra
for the soliton response to an external EMF. All the missing factors mentioned will
introduce new features in the biological effects of EMF and we intend to investigate
their role in forthcoming papers.
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