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ABSTRACT This article describes new methods to characterize epidemiologic contact
networks that involve links that are being dynamically formed and dissolved. The new
social network measures are designed with an epidemiologic interpretation in mind.
These methods are intended to capture dynamic aspects of networks related to their
potential to spread infection. This differs from many social network measures that are
based on static networks. The networks are formulated as transmission graphs (TGs),
in which nodes represent relationships between two individuals and directed edges
(links) represent the potential of an individual in one relationship to carry infection to
an individual in another relationship. Network measures derived from transmission
graphs include “source counts,” which are defined as the number of prior relationships
that could potentially transmit infection to a particular node or individual.
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INTRODUCTION

Most of the literature in epidemiology that analyzes contact network data employs
concepts from social network analysis based on static graphs.1–7 This paper presents
new methods for constructing dynamic graphs designed to reflect the potential of
a network to transmit infection. These methods construct what we call transmission
graphs (TGs). In TGs, the nodes represent a pair of individuals who are associated
in a fashion that permits the transmission of infection between them. The directed
edges of the graph represent the potential for one individual in a nodal pair to carry
infection to another nodal pair in which the individual is involved.

We propose the use of “source counts” derived from TGs as elements for net-
work measures at the individual and population levels. Source counts summarize
the potential for the transmission of infection from prior or concurrent relation-
ships and individuals to a particular relationship or individual. Aspects of individ-
ual source counts have the potential to provide summary measures of the overall
network or characteristic neighborhoods of the network that reflect the potential
for epidemic transmission or to sustain endemic infection.

The article is organized as follows: In the first section, we discuss the effect of
contact patterns on epidemiologic population effects and the need to develop net-
work measures that reflect the influence of contact patterns on infection transmis-
sion. In the second section, we lay out the formulation of two specific types of TGs:

Drs. Riolo and Koopman are with the Department of Epidemiology and Dr. Chick is with the Depart-
ment of Industrial and Operations Engineering, University of Michigan.

Correspondence: Christopher Riolo, DDS, MS, Department of Epidemiology SPH-1, 109 Observa-
tory Street, Ann Arbor, MI 48109-2029. (E-mail: criolo@umich.edu)

446



EPIDEMIOLOGIC CONTACT NETWORKS 447

cumulative transmission graphs (CTGs) and interval transmission graphs (ITGs).
The third section demonstrates the methods used to calculate source counts from
TGs. In the fourth section, we present an example and discussion of the use of
source counts using data generated from GERMS software. GERMS simulates the
stochastic spread of infection in populations of discrete individuals that have het-
erogeneous mixing patterns and potentially different susceptibility to infection and
contagiousness.8 We also discuss directions for future work.

BACKGROUND AND RATIONALE

From a social network analysis perspective, the “distance” between two individuals
is not merely a function of the physical distance between them, but also of the
“social distance.”9 These social factors are important determinants of the structure
of contact networks. The importance of patterns of contact networks in epidemiol-
ogy has been shown by a number of authors.4–7,10–16 The epidemiologic modeling
literature indicates that the specific structure of the network of concurrent relation-
ships is related to the magnitude of the spread of an infectious agent.4–7,14,17 There
are a number of papers that suggest that network-oriented survey design is essential
to designing effective intervention strategies for some infectious diseases, especially
sexually transmitted diseases.18,19 There may be many infectious and chronic disease
processes for which a social network approach will lead to insights regarding cau-
sality and intervention. Most authors who integrate social network analysis and
epidemiology have done so in the context of sexual relationships among individuals
when investigating sexually transmitted diseases and have applied social network
analysis measures to these epidemiologic networks.20–22 Despite the potential of so-
cial network analysis in the study of infectious disease transmission, little theoreti-
cal work was undertaken until the acquired immunodeficiency syndrome (AIDS)
epidemic in the 1980s.23

In the last 10 years, there have been a number of investigators who have at-
tempted to adapt social network measures to epidemiologic investigations.5,24,25

These sociometric network measures capture strong determinants of population
infection levels that are missed by individual risk factor measurements.4,26 Contact
tracing to define individual networks has been performed,20,27,28 as have population
surveys and the estimation of partnership rates for different types of individuals.29

Morris and Kretzschmar5,6 have made a major advance by defining network
measures related to partnership concurrency; some of these measures can be calcu-
lated using egocentric data. Because these measures do not consider relationships
of current links to past links and because important determinants of population
infection occur at the sociometric level that are not captured by the ego-centered
data, these measures will still miss many determinants of infection. Much remains
unknown regarding the influence that the conformation of a transmission network
has on epidemic dynamics, specifically the relationship between contact patterns at
different levels and their effect on the rate of change of epidemiologic outcome
variables such as the endemic level of the infection and initial rate of epidemic rise.
Contact networks are not static; they change through time. To capture important
aspects of these continually changing networks, this article presents methods to
describe dynamic networks and suggests summary measures for the description of
these networks. To study transmission networks, it is important that measures of
network conformation be developed that are epidemiologically interpretable and
therefore relevant to epidemiologic theory.
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We are developing sociometric network measures in which relationships be-
tween individuals, rather than individuals themselves, constitute the nodes of the
network graph.5 Directed links between these partnership nodes are defined when
one individual is common to two nodes (partnerships) and the timing of formation
and dissolution of those two relationships meet specified criteria chosen to reflect
the potential for infection transmission.

TRANSMISSION GRAPH FORMULATION

The TGs are intended to represent epidemiologically meaningful paths through a
network of contacts through time. TGs are constructed from individual contact
data using a set of timing rules. Relationships between two individuals constitute
the nodes of the TG. TGs are directed node graphs, also called digraphs, that have
a specific epidemiologic interpretation. The essential properties of TG are that they
consider temporal properties of disease transmission. TG incorporates some of the
dynamic aspects of contact networks relevant to infection transmission. In this sec-
tion, we discuss two specific TG formulations. The first is an ITG, and the second
is the CTG.

Cumulative Transmission Graphs
The sociometric data needed for the formulation of a CTG includes (1) when a
relationship began and ended, (2) which members constitute the relationship, and
(3) the length of time corresponding to the sum of the incubation period and the
duration of contiguousness. For example, in the case of gonorrhea, the first two
data elements could be obtained either from contact histories obtained from an
entire population or from contact tracing beginning with a representative sample
of the population of interest. The incubation period would have to be obtained
from the literature.30 The major use of the work presented in this paper, however,
is in advancing theory rather than in advancing the analysis of such data. Specifi-
cally, we plan to use our methods to understand better the behavior of infection
transmission systems, utilizing simulations such as the one presented below. The
algorithm for constructing the TG from the data is as follows:

Define Tbi as the beginning time of a relationship i, Tei as the ending time of a
relationship i, and δ as a fixed period with a length equal to the combined
incubation period and duration of contagiousness.
Given (1) the two relationships i and j share at least one member, (2) Tbj < {Tei
+ δ}, and (3) Tbi < Tej.
Then, relationship i has a directed link to relationship j.

All TG are “dynamic” in the sense that they capture something of the dynamics
of the formation and dissolution of relationships of a population of individuals
over time, resulting in a directed network of contacts. If we reduce δ to 0, then we
are left only with bidirectional arrows representing temporally concurrent relation-
ships identical to the graphs defined by Morris and Kretzschmar.5

To illustrate, the data might appear as follows in Table 1. The data are outlined
in the table such that relationship 1 has individuals A and B as members, and the
relationship starts at time 1 and ends at time 10. Relationship 6 has members A
and E and a start time of 20 and ends at time 40. Compare the graphs in Fig. 1; as
time increases, the cumulative graph becomes larger (or, in some cases, remains the
same). The CTG represents all infection transmission potential up to a specified
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TABLE 1. Data needed for a cumulative transmission graph

Time 11111111112222222222333333333344444444445
Relationship# Members 12345678901234567890123456789012345678901234567890

1 A, B *-------------*
2 A, C *--------*
3 B, C *-------------*
4 C, F *--*
5 A, B *----------------------
6 A, E *--------------------------------*
7 D, G *---*
8 D, E *----------------------------*
9 E, G *-*

This table represents data where the relationship ID is listed in the first column. The IDs of the constit-
uent member individuals are listed in the second column. The times that the relationsips are active are
represented in the last column; time runs from 1 to 50 units.

time T. The in-degree of a node is the number of links that end at (point toward)
the node. Similarly, the out-degree of a node is the number of links that start at
(emanate from) the node. The sum of the in-degree and out-degree is the degree of
the node.

The selection of δ for the formulation of a TG is essential to the interpretation
of the graph and measures derived from the graph. The δ parameter represents a
time interval equal to the combined incubation and duration of contagiousness
of a particular disease. As defined above, the δ parameter overestimates infection
transmission potential. The length and definition of this parameter could be modi-
fied, and this should be considered when interpreting measures extracted from TGs.

CTGs have some strengths and limitations. The major strength is also one of
the main limitations: CTGs represent a continuous record of potential infection
transmission. The number of links increases over time in CTGs. This tendency re-
sults from the fact that links are added and never removed. This means that the
longer the time span represented by the cumulative graph, the greater the computa-
tional problem, and the harder it is to interpret measures derived from the graph.
There is also a scaling problem when computing source counts on CTGs. Nodal
source counts represent the number of nodes in the graph that could potentially

FIGURE 1. Graph 1a is a CTG representation of the data in Table 1 at time T = 14 with δ = 5.
Graph 1b is a CTG representation of the data in Table 1 at time T = 50 with δ = 5.
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transmit infection to a particular node, and an individual source count is the num-
ber of nodes that could potentially transmit infection to a particular individual.
This means that CTGs that represent a long span of time will tend to have larger
nodal and individual source counts than cumulative graphs that represent shorter
time spans given the network conformation characteristics. In addition, relation-
ships (nodes) that are “closer” to a particular relationship (node) are more likely
to transmit infection forward to that relationship than relationships that are farther
away. One way to address this issue is to weight the links to reflect this probability
gradient. Alternatively, we can remove or “drop” links that are less relevant in
terms of infection transmission. The dropping of links can also be used to address
the scaling problem with cumulative graphs.

Interval Transmission Graphs
The difference between CTGs and ITGs is that cumulative graphs add nodes and
links that are never removed, while interval graphs both add and remove nodes and
links. The computation of the ITG allows comparisons to be made between two
different networks, as well as the same network at different times.

The algorithm for the construction of an ITG is identical to that for the CTG
outlined above with the addition of a rule for removing links and nodes. There is
an additional parameter ω, which regulates the dissolution of links and nodes in
the dynamic graph. In this article, we used δ = ω, although in general, it may be
useful to consider different values of ω. The additional rule for the formation of an
ITG is as follows: The in-degree links to a node nk are dissolved at time Tek + ω.
All links must be removed from the in-degree node. Nodes are removed from the
ITG when all links (in-degree and out-degree) are removed.

Using this new rule, let us examine two examples of the formation of ITGs
using the interval timing rule for the data in Table 1. Graphs 1a and 2a represent
the CTG and the ITG representation at time 14, respectively. A comparison of
graphs 2a and 2b in Fig. 2 reflects that there is more relationship activity at time
14 than at time 50 and reflects the dynamic nature of these TGs. The difference in
the node and link density between the cumulative and interval graphs at time 50 is
demonstrated in graphs 1b and 2b. The ITG more accurately reflects the infection
transmission potential than the cumulative graph at time 50.

Consider a node k, which is far “down chain” from a node of interest, and a
node j, which is only a few links down chain from the node of interest. Node k has

FIGURE 2. Graph 2a is the ITG representation at time T = 14 derived with δ = ω. Graph 2b is the
ITG representation at time T = 50 derived with δ = ω of 5.
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a much smaller probability of actually infecting the node of interest compared to
node j, which is closer. There are many weighting schemes possible, but the elimina-
tion of distant, less-relevant nodes and links has the advantage that it solves the
scaling problem produced when CTGs representing time intervals of different
lengths are examined.

CALCULATION OF SOURCE COUNTS FROM
TRANSMISSION GRAPHS

From the TG, it is possible to construct a source count for each relationship, as
well as for individuals who comprise these relationships. The source count is the
number of previous partnerships that could have originated a chain of infection
that could reach the partnership of concern. The method used to calculate the
source counts depends on the data structure used to represent the TG.

Computing Relationship Source Counts
An adjacency matrix is a representation of a TG of size n and is an n × n matrix
X. A 1 appearing in the ith column and the jth row of an adjacency matrix signifies
that node i can be reached by node j using one link (note that X1 = X). Therefore,
the two nodes are adjacent. The in-degree of node ni can be found by computing
the sum of the ith column (and the out-degree is found by computing the sum
of the ith row) of an adjacency matrix X.

To determine the nodes that are reachable using two links, the matrix X2 is
examined similarly. The nodes that are reachable in m links are represented by the
product matrix Xm. The summation matrix P is the sum of these product matrices,

P = ∑
m

k=1

Xk represents all of the possible paths between any two nodes. The integer

m is the number of terms in the sum above that forms the matrix P and is never
larger than 1 less than the order of the adjacency matrix X. Note that the order of
an adjacency matrix X is the number of nodes in the TG. Since we do not want to
allow any node to have the potential to infect itself, there should be only zero
elements on the diagonal of P. Therefore, transform P by replacing all nonzero
elements in the diagonal with 0. In addition, when calculating source counts, we
are only interested in the number of distinct nodes that can reach a particular node.
Both the number of nodes (relationships) that can potentially transmit infection
forward to a particular node and the number of paths of potential infection trans-
mission influence the risk of infection to a particular relationship. We feel that the
number of paths of potential infection transmission is a measure of the “robust-
ness” of the risk of infection to a relationship (node). If we do not wish to consider
the number of paths that exist, only that there exists a path, we must transform
the summation matrix such that the matrix P has no entries greater than 1. The
transformations described above are combined below and summarized as a single
transformation T.

Define a transformation T on a matrix P: For xij ∈P and yij ∈T(P), where i ≠ j,
yij = 1, if xij ≥ 1, yij = 0 otherwise, where i = j, yij = 0.

Now, to define the reachability matrix R in terms of the summation matrix P,
apply the transformation described above, R = T(P). The reachability matrix R is
an n × n matrix for which, if there is a 1 in the rij entry of the reachability matrix,
then there is at least one path from the ni node to the nj node. Likewise, if there is
a 0 in the rij entry of the reachability matrix R, then there is no path from the ni
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node to the nj node. Therefore, the source count of node i is exactly the sum of the
ith column of the reachability matrix R. Consider the adjacency matrix representa-
tion of the digraph 1a in Fig. 1:

Now, transform P to R using the transformation T(P), defined above,

The column sums (source counts) of the reachability matrix R are

n1 = 0 + 1 + 0 + 1 = 2, n2 = 1 + 0 + 0 + 1 = 2, n3 = 1 + 1 + 0 + 1 = 3,
n4 = 0 + 0 + 0 + 0 = 0

Note that the matrix P reflects the number of paths between specified nodes,
and the column sums represent the number of paths from the ancestors of a node
to the particular node. While the column sums of the transformed matrix R speci-
fies the number of distinct ancestors. This method works with any matrix represen-
tation of a graph whether the relation is directional or nondirectional. With slight
modification, it also works for disconnected graphs. There are other efficient meth-
ods for the calculation of source counts, such as the Floyd-Warshall algorithm.31.
The computer code for the construction of the CTG and ITG from the individual
contact data (GERMS output) and the extraction of the node source counts was
written in the C programming language and is available via the internet.32

Any partnership or individual characteristic can be used to specify source
counts. For example, the source counts for sexual partnerships formed in one set-
ting that may transmit gonorrhea could be specified. This would help establish the
risk of partnerships formed in different settings. Alternatively, the number of source
partnerships involving a specific type of individual could be used to derive the
source partnerships for a class of individuals. For example, in any attempt to per-
ceive immunity effects for gonorrhea, source counts for individuals with different
past histories of infection could be used to control for exposure effects.
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Computing Individual Source Counts
To compute the individual source counts, the nodal source count is added for each
of the nodes that have the particular individual as a member. In this case, individual
source counts are interpreted as the number of prior relationships that have the
potential to transmit infection forward to a specified individual. Other statistics
such as the mean, maximum, or other distribution information of the nodal source
counts in some circumstances may prove to be more informative when computing
individual counts.

Nodal progenitor counts represent the number of relationships that a particular
node could potentially infect. Progenitor counts are defined analogous to source
counts, but temporally reversed. Interactions between nonadjacent nodes (relation-
ships) can be influenced by individuals in relationships that lie in the path between
other nodes. The shortest path between two nodes is called a geodesic. A relation-
ship (node) that lies on the geodesic between many other nodes has a large “be-
tweenness” centrality.9 Betweenness measures can be calculated for both nodes and
individuals involved in ITGs using both source and progenitor counts.

EXAMPLE OF SOURCE COUNT USE AND CONCLUSIONS

The network data used in this work were generated by GERMS,8 a microsimulation
of individuals that enter into population contact processes. GERMS tracks and
maintains the infection history, personal attributes, and relationships between indi-
viduals during which infection can be transmitted. This allows the reconstruction
of the contact network and the transmission of infection through the population.33

In this section, we present data from GERMS based on gonorrhea transmission;
we use it to demonstrate some early applications of source counts on data that
illustrates the effect of mixing pattern on infection transmission at the population
level. The results of a simulation are shown in Fig. 3. The parameter settings used
to represent the differences between high-risk and low-risk groups are presented in
Table 2. There are 10 individuals in the high-risk group and 50 individuals in the
low-risk group.

The only difference between the runs is the mixing pattern. The prevalence is
plotted versus time in days for three different mixing patterns: assortative, propor-
tional, and disassortative. With proportional mixing, the high-risk individuals are
equally available to mix with other high-risk individuals and the low risk individu-
als. Under assortative mixing, the high-risk individuals are almost exclusively avail-
able to form relationships with other high-risk individuals. Under disassortative
mixing, high-risk individuals are almost exclusively available to form relationships
with low-risk individuals and vice versa.

The individual source counts calculated on an ITG at times 180, 360, and 720

TABLE 2. Difference between parameter settings of high- and
low-risk individuals

Parameter High risk Low risk

Contact rate 1 per 2 days 1 per 7 days
Relationship duration 7 days 90 days
Concurrency High degree of concurrency Monogamous
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FIGURE 3. The effect of mixing on prevalence. Proportional mixing results in the highest en-
demic level, followed by assortative and disassortative mixing in descending order.

days for the proportional mixing example from Fig. 3 are shown in Fig. 4. Individ-
ual source counts represent the number of prior relationships that have the potential
to transmit infection forward to the relationships that contain the specific individ-
ual as a constituent member. That is, individual source counts are the number of
prior relationships that have the potential to transmit infection forward to the spe-
cific individual. Figure 4 shows that, while the source count for each individual
changes over time, the overall qualitative structure of the plot remains constant
over time. The fact that the plots remain qualitatively constant demonstrates that
the simulation that generated the network data was at equilibrium before time 180.
The differences between these plots in Fig. 4 are due to stochastic variation of the
simulation.

FIGURE 4. Individual source counts for a dynamic graph calculated at times 180, 360, and 720
days for the proportional mixing data. Individual source counts are shown on the y axis, and the
individual IDs are on the x axis. IDs 1–10 correspond to the high-risk individuals, and IDs 11–60
correspond to the low-risk individuals.
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FIGURE 5. Individual source counts for the three different mixing patterns calculated at time
180. The individual IDs are plotted on the x axis and the source counts on the y axis. IDs 1–10
are the high-risk individuals, and IDs 11–60 are the low-risk individuals.

The individual source counts were calculated at time 180 for each of the mixing
patterns and are plotted in Fig. 5. These plots show that the individual source
counts for the high-risk individuals vary substantially for the different mixing pat-
terns. Notice that for the assortative mixing case, many low-risk individuals have
source counts similar to those of the high-risk individuals. More information is
needed regarding the network conformation to explain this feature of the graph.
For example, are the source counts for the low-risk individuals derived from long
chains of transmission? Are the high-risk individual source counts derived from
high-density clusters, some of which may be loosely connected? We are working on
network measures that reflect aspects of network conformation such as between-
ness, other aspects of centrality, and component number and size. In addition, the
fact that so many individuals under disassortative mixing have source counts of 0
in Fig. 5 may account for the fact that infection dies out under this mixing pattern.

CONCLUSIONS

This article is an introduction to methods for modeling epidemiologic contact net-
works. We feel that these methods will be useful in modeling many infectious pro-
cesses. These transmission graphs can be modified to represent different modes of
transmission of infections. For example, in the case of waterborne Cryptosporidia,
there could be two types of links. The first, links that represent transmission poten-
tial between individuals, could transmit infection in either direction. The second
type of link could only transmit infection in one direction, from the water contami-
nator to the water consumer. Graph formulations are also possible that would
involve relationships between an individual and an epidemiologic vector.

This work lays foundations for future work. Future work related to sampling
techniques such as “snowball” sampling and missing data analysis may enable the
estimation of these networks in real-world situations. Our plans for future work
include the development of additional network measures based on TGs, such as
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centrality and betweenness measures. We plan to use these measures to elucidate
the relationship between model parameters and epidemiologic outcome measures.
We also plan to use these measures to demonstrate the relationship between local
or neighborhood network structure and the overall population dynamics. We feel
that dynamic transmission graphs that have an epidemiologic interpretation and
the measures derived from them will be useful to understand the effect of contact
relationships on infection transmission dynamics.
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