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Abstract. We consider a lattice of coupled identical differential equations. The coupling is be-
tween nearest neighbors and of resistance type, but the strength of coupling varies from site
to site. Such a lattice can, for example, model an islet of Langerhans, where the sites in the
lattice model individual but identical β-cells, and the coupling between cells is made of gap
junctions.

By using a homogenization technique we approximate the coupled discrete equations by a PDE,
basically a nonlinear heat equation (a Fisher equation). For appropriate parameters this equation is
known to have wave-solutions. Of importance is the fact, that the resulting diffusion coefficient does
not only depend on the average of the coupling, but also on the variance of the strength. This means
that the heterogeneity of the coupling strength influences the wave velocity—the greater the variance,
the slower is the wave. This result is illustrated by simulations, both of a simple prototype equation,
and for a full model of coupled beta-cells in both one and two dimensions, and implies that the natural
heterogeneity in the islets of Langerhans should be taken into account.
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1. Introduction

The pancreatic islets of Langerhans consist of thousands of coupled cells, among
these the β-cells produce insulin. To have a proper functioning and insulin
production, it is very important that the β-cells co-operate in a synchronized
manner, and the coupling between cells made up of gap junctions seems to be
crucial for this synchronization ([3, 5] and references herein). In [1] it was shown
experimentally that calcium waves could provide a way to synchronize the cells.
Using a mathematical model of the β-cells the authors showed that the gap junctions
indeed could result in waves of the observed kind. However, the simulated speed
was significantly faster (about 200 µm/s) than the experimentally observed speeds
(30–100 µm/s), if standard values were used in the model. The authors gave possible
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explanations for this speed difference, all involving modifying parameter values.
It was assumed in [1] that the coupling strength was constant from site to site.

This is known not to be the case, indeed there is a natural variance of the coupling
strengths [7, 5].

We show here that if the authors of [1] had taken into account the natural variance
of the coupling strengths of the gap-junctions, they would have seen significantly
lower wave-speeds—in some cases—even in the experimentally observed region.

To understand why the average (the arithmetic mean) of the coupling strength is
not enough to estimate the propagation speed of the waves, we need the mathemati-
cal discipline homogenization theory (see [2]), which shows that, it is the harmonic
mean that determines the velocity—and this will explain why the variance is im-
portant.

The paper is organized as follows. In the next section we look at the general case,
and see that the homogenization theory can indeed be applied, and the harmonic
mean determines the wave speed. This is then used for the Fisher equation (Section
3) to see that the theory estimates the simulated wave-speed very well. We then
move on to compare it with the β-cell model, obtaining the results mentioned above.
Finally, two-dimensional simulations show that similar conclusions can be made
in both the case of the Fisher equations and the β-cell model in 2D. We discuss
the results in Section 6. A detailed description of the β-cell model is given in the
Appendix.

2. The Model and Homogenization—The Continuum Limit

We consider an finite line of cells modeled by ( j = 0, . . . , N )

dv j

dt
= f (v j ) + g j+1 · (v j+1 − v j ) + g j · (v j−1 − v j ). (1)

The relevance for β-cells is similar for Eqs. (5) and (6) in [1]. This is discussed
further in Section 4.

The distance between neighbors is set to be ε such that v j = v( jε), and we
observe the behavior when ε → 0. Let us first consider the simple case of equal
connections, where every gi = g = ε−2 D for a constant D (see also [1]). With
x = jε, we get

∂v

∂t
(x) = f (v(x)) + g · (v(x + ε) + v(x − ε) − 2v(x)),

or, using a Taylor approximation and letting ε → 0,

∂v

∂t
(x) = f (v) + D

∂2v

∂x2
, (2)
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which is known to have wave solutions for appropriate f , with propagation velocity
proportional to

√
D [1].

Now, we assume that the connection varies from site to site as described by (1).
Let κε be a family of differentiable functions with ||κε||∞ independent of ε. With
g j = g( jε) = ε−2κε(x), x = jε we get as above:

∂v

∂t
= f (v) +

(
g + ε

∂g

∂x
+ o(1)

) (
ε
∂v

∂x
+ ε2

2

∂2v

∂x2
+ o(ε3)

)

+ g ·
(

−ε
∂v

∂x
+ ε2

2

∂2v

∂x2
+ o(ε3)

)
(3)

= f (v) + κε(x)
∂2v

∂x2
+ ∂κε

∂x

∂v

∂x
+ o(ε)

= f (v) + ∂

∂x

(
κε(x)

∂v

∂x

)
+ o(ε).

2.1. PERIODIC COUPLING

We hold the total length constant, Nε = L , and assume that the coupling strength
is periodic, g j = g j+J for some J. This can be incorporated in (3) without any
loss of generality by assuming that κε(x) = κ( x

ε
), where κ is a periodic function of

period 1 with 0 < κ1 ≤ κ ≤ κ2 for constants κ1, κ2. Then we obtain

∂v

∂t
= f (v) + ∂

∂x

(
κ

(
x

ε

)
∂v

∂x

)
+ o(ε). (4)

The theory of such equations in the limit ε → 0 is understood well from
material science modeling of a periodic structure and is rigorously covered by the
mathematical discipline of homogenization theory (see [2]).

In the limit ε → 0 we get the equation [2]:

∂v

∂t
= f (v) + κ∗ ∂2v

∂x
(5)

where κ∗ is not the average of κ , E(κ), as one might expect from a first guess, but
instead is the harmonic mean

κ∗ = (
E(1/κ)

)−1
. (6)

We expect that the solution to the discrete Eq. (1) behaves similar to the solution
of Eq. (5). Of course, if κ(x) = D is constant, we obtain Eq. (2) again.
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To understand the implications for the heterogenous case, we consider the sim-
plest case, where

κ(x) =
{

g1 for 0 ≤ x ≤ 0.5,

g2 for 0.5 ≤ x < 1,
(7)

g2 > g1, modeling interchangingly strong and weak coupling.1 The unique part
is that it is not the average E(g) = g1+g2

2 that determines the wave velocity, but
instead

(
g−1

1 + g−1
2

2

)−1

= 2 · g1g2

g1 + g2
= (E(g) − σ (g))(E(g) + σ (g))

E(g)
= E(g) − σ (g)2

E(g)
,

where σ (g) = g2−g1

2 is related to a kind of “standard deviation” of g, i.e., the degree
of heterogeneity of the couplings.

In general, we have

κ∗ = (E(1/κ))−1 ≤ E(κ),

and we expect that in the case of wave propagation, a greater variance will lead to
slower waves.

2.2. RANDOMLY DISTRIBUTED CONNECTIONS

In the proof of the above [2] the periodicity of κ is not explicitly used—only that

1

κε

→ E(1/κ) weak star in L∞.

This should also be true if we choose the connections g j randomly from a fixed
distribution F, i.e., as data coming from a stochastic variable X with distribu-
tion F. For sufficiently multiple connections (i.e., ε small enough) integrating 1

κε

should be near the average of, not the original distribution, but E(1/X). This would
be a consequence of the Law of Large Numbers for weighted averages. Hence, the
theory should also work in this case.

3. Numerical Simulations of a Simple Model

3.1. PERIODIC COUPLING

We consider a line of 500 cells connected with interchangingly weak and strong
connections as indicated in Eq. (7), and with a no-flux boundary condition
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(v0 = v1, v501 = v500). We observe that the propagation velocity, c, should not
depend on the average of the connections, E(g), but instead, we have

cth = K ·
√

(E(1/κ))−1 = K ·
√

E(g) − σ 2

E(g)
, (8)

where K is a constant, which we can find from the homogeneous case, σ = 0.
We choose a simple model, the Fisher equation, with

f (v) = −v(v − a)(v − 1).

It is well known [8] that the wave speed in the homogeneous case σ = 0 is

c0
th =

√
D

2
(1 − 2a) =

√
E(g)

2
(1 − 2a), (9)

so that

cth = 1 − 2a√
2

√
E(g) − σ 2

E(g)
. (10)

We hold a = 0.1, E(g) = 2 is fixed and σ varies from 0 to 1.9. The initial
conditions are v j = 0 for all j. We start a wave by instantaneously rising v1 = 1.
Then the time is measured when respectively v100 and v500 reach the value 0.9,
from which we can calculate the speed, c. We see in Figure 1 that the theory indeed

Figure 1. Comparison between theoretical propagation velocities (cth, the curve) and the sim-
ulations (c, the circles) as a function of the “deviation”, σ , for the Fisher equation with periodic
coupling is shown. Here, a = 0.1 and E(g) = 2 so that c0

th = 0.8.
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estimates the simulated speed very well, especially if the variance is not too big, and
also get the right speed for the homogeneous case σ = 0, c0

th = 1−2·0.1√
2

√
2 = 0.8.

Varying E(g) and a does not seem to change this conclusion as long as the
parameters initiate a wave.

3.2. RANDOMLY CHOSEN COUPLING

Again we simulate a line of 500 cells modeled as given in the previous subsection.
However, now the coupling strength is chosen randomly from a gamma-distribution
GAMMA(a, b). The reasons for choosing the gamma-distribution (and not for ex-
ample a normal distribution) are that we know the average of the inverse gamma-
distribution, and will always have a positive coupling strength. We have for X ∼
GAMMA(a, b),

E(X ) = ab, Var(X ) = ab2, (11)

and

(
E

(
1

X

))−1

= (a − 1)b = E(X ) − Var(X )

E(X )
. (12)

So, also in this case we expect that the propagation velocity decreases with increas-
ing variance following

cGamma
th = K

√
E(X ) − σ 2

E(X )
. (13)

We hold E(X) = 2 constant as above, and vary σ 2 = Var (X). Figure 2 shows that
the theory predicts the simulated speed well.

The fit is not so good as in the periodic case because of the random factor.
Comparing with the so-called semi-theoretical speed

csemi = K

√√√√(
1

400

500∑
i=101

1

gi

)−1

, (14)

obtained from the actual coupling used in the simulation, we get a better fit. In this
manner, we see that a large part of the difference between simulated and theoretical
speeds arises from the random choice of coupling strengths rather than from a gap
in the theory. Again, repeating the simulations does not change the conclusion,
and of course, the average of many such simulation should fit the theoretical curve
well.



HOMOGENIZATION OF HETEROGENEOUSLY COUPLED β-CELLS 291

Figure 2. Comparison is shown between theoretical propagation velocities (cGamma
th , the punctu-

ated, smooth curve), the semi-theoretical velocities (csemi, the rugged curve) and the simulations
(the circles) as a function of the variance, Var = σ 2, now for Gamma-distributed couplings.
Again c0

th = 0.8. For Var > 2.6 most of these specific coupling strengths and initial conditions
do not initiate a wave.

4. A Line of β-Cells

We simulate a line of β-cells using the same model as given in [1]. However, we
choose the coupling strengths randomly, so that they vary along the line. This is in
contrast to the simulations given in [1] where an identical coupling was assumed.
We show how the propagation speed depends on the variance of the couplings. In
particular, it is shown that the heterogeneity can provide another explanation why
the simulations in [1] gave very high wave speeds.

4.1. MODEL AND METHOD

The model is taken from [9] and is given as follows with j = 1,. . . , 20:

cm · dv j

dt
= I

(
v j , n j , s j , Cai

j , Caer
j

) + g j (v j−1 − v j ) + g j+1(v j+1 − v j ), (15)

dn j

dt
= n∞(v j ) − n j

τn
, (16)

ds j

dt
= s∞(v j ) − s j

τs
, (17)

dCai
j

dt
= f · (

α ICa(v j ) − kcCai
j

) + (Jout − Jin), (18)

dCaer
j

dt
= Jin − Jout

ρ
. (19)
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Here, v j is the membrance potential, n j and s j are, respectively, fast and slow gating
variables, Cai

j is the intra-cellular calcium concentration and Caer
j is the calcium

concentration in the ER calcium stores for the j ′th cell. The j ′th cell is coupled
through gap junctions to the neighboring cells j − 1 with conductance g j and ( j+1)
with conductance g j+1. The function I is the total membrance current, and ICa is one
of these currents, a voltage-dependent calcium current. Jin and Jout are the currents
going in and coming out of the ER stores, cm is the total membrance capacity, n∞
and s∞ are steady states depending on v, τn and τs are time constants and f , α, kc

and ρ are constants. We impose the no-flux boundary condition, v0 = v1,v21 = v20.
For details see [9, 1] or Appendix for detailed expressions and parameter values.

The relation to Eq. (1) is given as follows (see also [1]). On the wave front we can
uncouple the variables Cai and Caer , assuming that s is constant while n = n∞(v)
leaves only

cm · dv j

dt
= I (v j , n∞(v j ); s) + g j (v j−1 − v j ) + g j+1(v j+1 − v j ),

of the same form as (1).
Simulations now result in similar conclusions as seen for the Fisher equation in

Section 3: As the variance increases, the wave speed decreases.
Imposing a random initial condition on v j results in a wave pattern after a very

short transient period. The speed is found as the length between the center of the first
and the last cell, L = 20×10 µm, divided by the (absolute) difference of the times
when v1, respectively, v20 increases through −60 mV signifying the beginning of
an active period. Hence we count waves starting from either side of the line. To
ensure that we do not count “false” beginnings we require that s1, s20, is less than
0.45 at the same time. This value was found empirically.

Now we take the average speed of many successive waves (until t = 1000
s), but only counting speeds between 30 and 500 µm/s (the typical simulated
value is 100–250 µm/s, in experiments it is 30–100 µm/s). Hence, we rule out
very fast waves because these are probably waves starting almost simultaneously
from both sides, and very slow speeds because these are probably coming from
errors in the measure method. For example, one could imagine that for a brief
moment v1 passes above −60 mV without starting a wave. However, the time
is recorded, so when v20 increases above −60 mV much later, we will obtain
a very small number for the speed. Such phenomena should of course be ruled
out.

4.2. SIMULATIONS

Simulations of periodic coupling with gi = 100 pS + (−1)i · σ as given in
Section 3.1 are shown in Figure 3, where the simulated average wave speed is
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Figure 3. Comparison is shown between theoretical propagation velocities (cth, the curve) and
the simulations (the circles) as a function of the “variance,” σ , for the β-cell model with periodic
coupling, gi = 100 pS + (−1)iσ .

compared with the theoretically expected value

cth = 200 µm/s

√
1 −

(
σ

100 pS

)2

,

where 100 pS is the average coupling strength, and the value of 200 µm/s is chosen
for obtaining a reasonable fit. This speed coincides with the speed found in [1]. We
see that for σ below approximately 70 pS, the simulated and the theoretical values
coincide pretty well, although there are large deviations. We claim, that at least the
tendency seems to be, that for larger σ the wave is slower.

We repeat the simulation, but now with coupling strengths randomly chosen from
a uniform distribution on (µ − d,µ + d), i.e. coming from a stochastic variable
X ∼ UNIF(µ − d,µ + d). The simulated wave speeds should be compared with

cth = K
√

E(1/X )−1 = K

√√√√ 2d

ln
(

µ+d
µ−d

)
1pS

. (20)

To distinguish whether the differences between the simulated speed and the speed
coming from the limit equation is due to the actual chosen coupling strengths, we
also compare with the semitheoretical value

csemi = K

√√√√(
1

19

20∑
i=2

1 pS

gi

)
. (21)
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Figure 4. Comparison is shown between theoretical propagation velocities (cth, the punctuated,
smooth curve), the semi-theoretical velocities (csemi, the rugged curve) and the simulations (the
circles) as a function of d for the β-cell model with uniformly, randomly chosen coupling,
UNIF(100 pS −d , 100 pS + d). We know that the relation between d and the variance is
Var = d2

3 . Here K = 20 µm/s, corresponding to a homogeneous velocity of 200 µm/s, is
chosen to obtain a good fit.

Again, we hold µ = 100 pS as fixed and vary d. Figure 4 shows that the sim-
ulated values are predicted well by the theoretical and the semitheoretical speeds,
cth and csemi. Also, we see that these two values coincides well, and hence the
simulated speeds are not different from the theoretical values because of a wrong
predicted value for the relevant (E(1/X ))−1. This corresponds to the fact that we
have discrepancies between the simulated and predicted speed even in the perfect
periodic case.

By using the gamma-distribution the same conclusion is yielded as shown in
Figure 5. Again we get a reasonable fit with the expected theoretical wave speed
from Eq. (13), at least for Var < 8000 (pS)2, or even better also for higher values
of Var by using the semitheoretical values from Eq. (21).

The simulations with a normal distribution confirm the general picture, as shown
in Figure 6. In this case we do not have a simple theoretical expression to compare
the speed with. Instead, after many simulations, we found that the average decreases
approximately from 210 µm/s to 150 µm/s. Because the normal distribution can
result in negative values, we take special care in setting these couplings to 0, sig-
nifying no connection between the two cells (indicated with a dot in Figure 6).
This should of course prohibit wave propagation. However, because the cells are
self-excitory, we can get two independent waves on each side of the point without
connection so that the overall picture could imitate a true wave. These cases should
be ruled out which results in a slightly greater average speed (the speeds quoted
above) than if these cases were included.



HOMOGENIZATION OF HETEROGENEOUSLY COUPLED β-CELLS 295

Figure 5. Comparison is shown between theoretical propagation velocities (cth, the punctuated,
smooth curve), the semi-theoretical velocities (csemi the rugged curve) and the simulations (the
circles) as a function of the variance, Var, for the β-cell model with randomly chosen coupling
from a Gamma-distribution, GAMMA(a, b) with a = µ2

Var , b = Var
µ

, where µ = 100 pS is the
average. Again we use the value 200 µm/s for the homogeneous case.

Figure 6. Several simulations were done of the wave speed for the line of β-cells with couplings
chosen from a normal distribution N(100 pS, σ 2). For each choice of σ we did 18 simulations
applying different configurations of the couplings. The circle indicates a simulation where all
the couplings were positive, the dot indicates a simulation where one or more of the couplings
were zero so that the line was not connected. The solid line indicates the average for the
connected lines (the circles), the dashed line the average of all the simulations (the circles as
well as the dots).
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Note that we get average speeds as low as 80µm/s for sufficiently large Var = σ 2

in all three cases. This is in the experimental range of (30–100 µm/s), hence we
observe, as previously mentioned, another possible explanation for the fact that
Aslanidi et al. found too large wave speeds in [1]—they did not consider the natural
variance between the coupling strengths in an islet.

5. The Two-Dimensional Case

We have successfully simulated two-dimensional wave propagation. We considered
a square lattice of 13 by 13 cells, each cell coupled to four nearest neighbors (N,
S, E and W) with a no-flux boundary condition.

Using the Fisher equation and choosing random couplings, leads to similar
conclusions as obtained in the one-dimensional case – for greater heterogeneity we
find lower propagation speed, as shown in Figure 7. The speed was found over the
center cells to rule out (part of) boundary phenomena and the fact that we start the
wave in a corner, which influences the speed measured over the first few cells. In
this case the speed is slightly higher than in the one-dimensional case (0.98 instead
of 0.8 for σ = 0). We expect that this stems from boundary phenomena.

For the β-cell model, we used the simpler (v, n, s)-system from Eqs. (15)–(17),
following Sherman [9]. We imposed heterogeneity by choosing the g j ’s from a
normal distribution N(100 pS, σ 2). Examples of two waves from our simulations
are shown in Figure 8.

Figure 7. Six simulations for each choice of σ , of the two-dimensional Fisher equation with
coupling strengths chosen from a normal distribution N (2, σ 2), showing the speed as a function
of the standard deviation σ . The curve shows the average speed of these six simulations.



HOMOGENIZATION OF HETEROGENEOUSLY COUPLED β-CELLS 297

Figure 8. Two typical two-dimensional waves obtained from the (v, n, s)-subsystem of the
β-cell model. In this simulation the coupling is chosen from a normal distribution, N (100 pS,
(53 pS)2). The upper figures show the most typical case, where the wave starts from just one
corner. The lower ones show the case where the wave starts almost simultaneously from two
corners (SW, NW), with a third (SE) starting “independently” slightly later. This results in a
much higher measured wave speed.

The speed was found by requiring that all four corner cells should enter the
active phase. The time from when this happened to the first, to the time it happened
to the last of these cells, was recorded and the diameter of the “islet”, L = 12

√
2 ×

10 µm = 170 µm, was used as the distance the wave had traveled. In the two-
dimensional case we do not rule out those cases where one or more of the g j ’s have
negative value; instead, we used the value 0, which implies that the two involved
cells are not coupled. This indeed is the case for about 33% of cell pairs in an islet
[7], but the wave can still propagate, using other couplings.

Again varying Var = σ 2 seems to have the same effect as seen in the one-
dimensional case–for larger σ , the propagation velocity is lower, as shown in
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Figure 9. Propagation speeds from the (v, n, s)-subsystem of the β-cell model with coupling
chosen from a N (100, σ 2)-distribution. For each choice of σ we did 11 simulations applying
different configurations of the couplings. The circles indicate each such simulation and the
curve shows the average of these 11 simulations, which decreased from 347 µm/s to 270
µm/s almost monotonously over the range from σ = 0 pS to σ = 63 pS.

Figure 9. Note that the wave speed is significantly greater, about 1.5–2 times as
great as in the one-dimensional case.

6. Discussion

The main outcome of this paper is the fact that heterogeneity plays an important
role in determining the wave speed of an excitation wave. In natural systems such
as the islet of Langerhans, the cells are always coupled in a heterogenous manner.
So far models have applied the average coupling strength found in experiments as a
prototype coupling strength and then, assumed that the coupling was homogenous.

Here we have shown that for estimating the propagation velocity the variance of
the coupling strengths plays a crucial role, both in the (pure mathematical) Fisher
equation (Figures 1, 2 and 7) and in a standard model for the β-cells in an islet
of Langerhans (Figures 3–6 and 9), for both the case periodic case (Figures 1 and
3) and the random case (Figures 2, 4–7 and 9), and further, both in the one- and
two-dimensional cases. To the best of our knowledge, this is the first published
literature on simulations of two-dimensional waves in a lattice model of an islet of
Langerhans.

The dependence of the coupling on the variance was explained theoretically
using the homogenization theory, which gave theoretic predictions of the propaga-
tion velocities using harmonic mean (E(1/g))−1 instead of the average (arithmetic
mean) E(g). This theoretic result coincided well with the simulated speeds, espe-
cially when we took into account the deviations arising from the random choices
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of coupling strengths using the semitheoretical speed. We believe that the use of
the homogenization theory in modeling the β-cells is a new application. It has been
used for a model of the cardiac tissue in [4]. However, from a different perspective,
investigating propagation failure and the case of varying gap junctions is not con-
sidered explicitly. The heterogeneity there stems from the difference between the
resistance in the cells and the resistance of the gap junctions.

However, we obtained excellent fits which simulated the theoretical results only
for the Fisher equation. For the β-cell model the difference between the predicted
and simulated velocities was greater. We suggest several possible explanations.

The first explanation could be that we used 500 “cells” for the simulation of the
Fisher equation whereas only 20 cells were used for the β-cell model. Hence, we
are closer to the continuum limit of ε → 0 given in the homogenization theory. In
Figure 10, we see a simulation of the Fisher equation for 20 cells, and observe that
the fit is still decent when we calculate the speed over the center cells (between cell
numbers 8 and 12). The deviation for low variance seems to stem from boundary
phenomena; when we calculated the speed over all the cells the deviation was found
to be significantly greater. Similar boundary phenomena were found in the case of
500 cells, if we calculated the speed over the last 20 cells. Hence, this boundary
phenomenon might explain some of the deviation for the β-cell, but the low number
of cells do not matter directly if we take their boundaries into the account. This also
explains why we found higher speeds from in the 2D-case (since the boundary is
much larger here).

However, even for the periodic case of the β-cell in Figure 3, we did not obtain
regular results. The boundary phenomena result in a nice pattern for the Fisher
equation, and hence the same should be expected for the full β-cell model. The

Figure 10. Simulated speeds from the Fisher equation, similar to Figure 1, but for 20 cells. The
circles are simulated speed calculated as the speed over all the cells whereas the crosses are
speeds (of the same waves) calculated over the center cells. The punctuated curve is obtained
from the theoretical curve by using the theoretical result c0

th = 0.8.
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β-cell model is known to admit chaos, even for a single cell [6], and the complex
situation with 20 or more coupled cells should be expected to behave irregularly. The
above fact complicates the calculation of the simulated wave speeds. The method
chosen to find the speed in the simulations could indeed be doubted. We have done
control simulations, going through the simulation in detail, and it seems that, in
general, the automatic method described in Section 4.1 obtain the same result as a
detailed “hands-on” calculation.

The simulations of the one-dimensional β-cell model showed that heterogeneity
alone was sufficient to obtain velocities in the experimental region, and we claim
that the fact that Aslanidi et al. in [1] used a homogenous coupling can explain the
major reason why they obtained too high speeds.

Interestingly, in the case of a normal distribution, which is probably the most
“natural” for a physical islet, these low velocities happen around the standard
deviation σ = 50, i.e., for σ about half of the mean. Perez-Armendariz et al.
[7] found experimentally that 67% of cell pairs were coupled with g j = 215 ± 110
pS, i.e., the standard deviation was about half of the average value. This might be
an optimal ratio for proper islet functioning. If the variance is less, the waves are
very fast, and if the variance is higher, too many cells will be uncoupled leading
to insufficient synchronization. A low variance and/or fast waves could result in a
lower responsiveness of the islet on glucose stimulation, as seen in experiments with
gene-manipulated cell in the islet expressing abnormally strong connections [3].
The idea is that all the cells in the islets responded even to low glucose stimulations
whereas in a normal islet only parts of the islet respond at low glucose levels, and
that more cells are entrained for greater glucose stimulation. Naturally, a variating
coupling strength would help in having such a behavior.

However, our two-dimensional simulations raised a new question: why do we
obtain very high wave speeds in the 2D case but not in the 1D case? Indeed the
experiments in [1] and elsewhere were practically two-dimensional, and hence the
2D case is of greater interest.

The fact that the wave is more likely to start independently at two corners (see
Figure 8, lower part), so that it has to travel a shorter distance, can explain this.
However, for the simulation shown in Figure 8 only 1 out of 15 waves started from
two (or more) corners, and in none of the cases where the wave started from one
corner did we find wave speeds less than 200 µm/s.

We also did one-dimensional control simulation of the reduced (v, n, s)-system,
which gave results similar to the full system, that ruled out the possibility that the
(Cai ,Caer )-variables are important.

As mentioned above boundary phenomena, which are more important in two
dimensions because more cells are near the boundary, seem to be a plausible expla-
nation. Indeed, we see in Figure 10 that the boundary phenomena can explain a rise
of the wave speed of up to 50%, similar to the increased speed between one- and
two-dimensional simulations for the β-cell model. If this is so, then there might
be a property of the islet or some condition in the experiments might exist, so that
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the no-flux boundary condition become inappropriate. Indeed, the center of an islet
has a different structure than the parts near the surface ([5] and references therein).
Or maybe, we simply require simulation of greater assemblies of cells—we did
the simulations for 132 = 169 cells. But in an islet there are of the order of 2000
cells, so if the cells were squished down to 2D with a height of e.g. three cells,
we should simulate 262 cells, i.e., four times as many. Mads Peter Sørensen (per-
sonal communications) pointed out another possibility, which is that the curvature
of the wave front might result in faster waves. We should pursue this possibility
further. Finally, the 3D-case should be of interest—indeed 2000 	 133 so that the
simulations presented here have a relevant size for this case.

In summary, the heterogeneity of the islet seems to have an important role in
the control of insulin secretion in response to glucose stimulation. Here we have
shown that the excitation waves spreading through the islet are modulated by the
heterogeneity of the coupling strength, thereby suggesting a way of expressing the
heterogeneity. Similar behavior should be expected in other organs consisting of
heterogeneously coupled cells, or in ecology modeling having interactions on a
smaller scale than that which is relevant for the full problem.
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Note

1. It seems reasonable to choose κ to be piece-wise constant if κ should model gap junctions, and this
will be done in what follows. However, then κ is not differentiable so to justify the calculations
leading to the PDE (3), we should use e.g. a smooth approximation of κ .

Appendix: The Equations and Parameters for The β-Cell Model

The functions and parameters of the Eqs. (15)–(19) are as follows:

I (v, n, s, Cai , Caer ) = Is(v, s) + ICa(v) + IK (v, n) + IK ,atp(v)

+ IK,Ca(v, Cai ) + ICRAC(v, Caer )

Is(v, s) = gs · s · (v − vk)

ICa(v) = gCa · m∞(v) · (v − vCa)

IK (v, n) = gK · n · (v − vk)

IK ,atp(v) = gK ,atp · (v − vk)
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IK ,Ca(v, Cai ) = gK ,Ca · (v − vk) · (Cai )5

(Cai )5 + k5
d

ICRAC(v, Caer ) = gCRAC · z∞(Caer ) · (v − vCRAC)

m∞(v) = 1

(1 + exp((vm − v)/sm))

n∞(v) = 1

1 + exp((vn − v)/sn)

s∞(v) = 1

1 + exp((vs − v)/ss)

z∞(Caer ) = 1

1 + exp((Caer − c̄ER)/sz)

Jin(Cai ) = vp

µ
· (Cai )2

(Cai )2 + k2
p

Jout(Cai , Caer ) = p1

µ
(Caer − Cai )

The parameters used through out the work are:

gCa = 1000 pS, gK = 2700 pS,gs = 200 pS,gK ,atp = 120 pS,

gK ,Ca = 1000 pS,gCRAC = 40 pS,

vCa = 25 mV,vk = −75 mV,vm = −20 mV,vn = −16 mV, vs = −52 mV,

vCRAC = −30 mV,sm = 12 mV,sn = 5.6 mV,ss = 5 mV,

cm = 5300 fF,τn = 20 ms,τs = 20000 ms,µ = 250 ms,

f = 0.01, kc = 0.2 ms−1,α = −4.5 · 10−6µM/( f A · ms,)

kd = 0.6, kp = 0.1 µM, vp = 0.24 µM, c̄E R = 4 µM, sz = 1 µM, ρ = 5, p1 = 0.02.

The diameter of a β-cell was set at 10 µm.
In the two-dimensional simulations we uncoupled (Cai , Caer ) by neglecting IK ,Ca and ICRAC. All

parameters were left unchanged.

All simulations were done using the banded version of the CVODE solver of the program XPPAUT

with standard tolerances.
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