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Viscous Damping of Vibrations in Microtubules
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Abstract. Pokorný et al. have recently suggested that metabolic processes drive microtubules in
a cell to vibrate at Megahertz frequencies, but the theory does not explicitly consider dissipative
effects which will tend to damp out the vibrations. To examine the effects of viscous damping on
the structure, we determine viscous forces and rate of energy loss in a cylinder undergoing longit-
udinal oscillations in water. A nondimensional expression is obtained for the viscous drag on the
cylinder. When applied to a microtubule, the results indicate that viscous damping is several orders
of magnitude too large to allow resonant vibrations.
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1. Introduction

Pokorný et al. have recently proposed that metabolic processes drive microtubules
in living cells into oscillations in the MHz frequency range [1]. A subsequent
paper reported weak narrowband electrical signals from yeast cells at frequencies
between 8–9 MHz, which the investigators interpreted as confirmation of the theory
[2].

Notably missing from this theory, however, is an explicit consideration of vis-
cous damping by the surrounding medium, or other dissipative processes which
have to be present, at some level. We estimate the magnitude of these effects by
developing a simple model.

2. The model

We calculate the viscous force on a uniform cylinder of radiusR immersed in a
fluid, which is undergoing forced sinusoidal oscillation at radian frequencyω in a
longitudinal mode. The cylinder is immersed in a fluid of densityρ and kinematic
viscosityν. The cylinder is acted on by a shear stress (axial force per unit surface
area)τ

τ = µ∂u
∂r

∣∣∣
r=R

(1)
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whereµ is the dynamic viscosity which is equal toνρ. The momentum equation
in cylindrical coordinates can be written

ν

(
∂2u

∂r2
+ 1

r

∂u

∂r

)
= ∂u

∂t
(2)

whereu is the axial component of the velocity. We assume no-slip (stick) boundary
conditions at the cylinder’s surface wherer = R

u(R, t) = U0 cos(ωt) (3)

In addition, the velocity is bounded far from the cylinder:

u(∞, t) = 0. (4)

This boundary value problem is analogous to that of heat diffusion in a solid
around a cylinder with an oscillating temperature [3]. Its solution has the form

u(r, t) = <{U0 exp(iωt)g(r)}. (5)

Substituting Equation (5) into Equation (2) yields

d2g

dr2
+ 1

r

dg

dr
− iω
ν
g = 0 (6)

whose solutions are modified Bessel’s function of the zeroeth order
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We reject theI0 solution which diverges at infiniter. The solution is then

u(r, t) = <
{
U0 exp(iωt)AK0

(
r

√
iω

ν

)}
(8)

whereA is determined from the boundary condition on the surface of the cylinder,
i.e.

U0 cos(ωt) = <
{
U0 exp(iωt)AK0

(
r

√
iω

ν

)}
. (9)

Finally, the velocity profileu(r, t) is given by

u(r, t) = <
{
U0 exp(iωt)
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ν

)
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)} . (10)

Inserting into Equation (1) and evaluating gives

τ = −U0<{exp(iωt)}µ
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For convenience, we evaluate the shear stress in normalized form(τR/µU0 vs.
R
√
ω/ν), and plot its magnitude and phase Figure 1. The viscous forceF on the

cylinder is then given by the product of the shear stressτ and the surface areaS of
the cylinder, i.e.

F = Sτ = 2πRLτ. (12)

The shear stress always lags the velocity, by angles ranging from 180◦ to 135◦
depending on the frequency. In this system the Reynolds number (Re) is low (� 1)
but the solution does not depend on Re.

Figure 1 also shows the corresponding solution for an oscillating slab (Stokes’
second problem), which is found in standard textbooks, e.g. [4]. In nondimensional
quantities, this solution is simply

τR

µU0
= R

√
ω

υ
(13)

where there is a phase angle of 135◦ between the velocity and viscous force. The
two solutions approach each other whenR

√
ω/ν > 1. In effect, as the frequency

increases, the thickness of the layer of moving fluid near the cylinder becomes
small relative to its radius, and the cylindrical problem reduces to Stokes’ second
problem for a slab.

3. Application to the microtubule

We assume that the medium has the material properties of water at 37◦C (µ =
695×10−6 N–s m−2 andν = 7.00×10−7 m2 s−1) and choose a radiusR = 12.5 nm
appropriate for a microtubule. Assuming a resonant frequency of 10 MHz (which
is towards the lower end of the proposed range of vibrations in [1]) the nondimen-
sional quantities areR

√
ω/ν = 0.118 andµU0 = 0.42. Under these conditions,

the viscous drag on the cylinder three times larger than would be experienced by a
slab of the same surface area.

These results can be interpreted most simply by assuming that the viscous force
is exactly out of phase with the velocity of the cylinder (the calculated phase lag is
162◦). The system is then equivalent to the simple mass-spring-dashpot oscillator
of elementary mechanics. The rate of energy loss per unit length of the cylinder,
due to viscous drag, is simply

dE(t)

dt
= −2πRτU(t) (14)

This is proportional to the kinetic energyE(t) per unit length

E(t) = 1

2
πR2ρcylU

2(t) (15)

whereρcyl is the mass density of the cylinder. This implies that energy is lost to
dissipative forces as a single exponential process with relaxation time constantT :
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Figure 1. Calculated magnitude and phase of viscous drag on a cylinder undergoing lon-
gitudinal oscillation. The quantities plotted are normalized units, which are defined in the
text.

T = −E
dE/dt

= rhocylR
2

2(0.42)µ
≈ 0.26 ns. (16)

The relaxation time in the cylinder is more than three orders of magnitude smaller
than the period of the postulated resonance. The damping is so strong that it is not
meaningful to speak of ‘resonance’ at all.

Similar considerations rule out storage of energy in the microtubule sufficient
to sustain oscillations. Pokorný et al. propose that the energy for the oscillations of
the microtubule is supplied by metabolic processes, i.e. hydrolysis of GTP when
tubulin heterodimers are added to the structure. The amount of energy that is added
by such processes can be estimated from a typical growth rate of a microtubule
of 1 µm min−1, which corresponds to addition of about 30 tubulin dimers per
second to the structure [5]. If we accept Pokorný’s estimate that the incorporation
of tubulin heterodimers adds 7.1 kJ mol−1 to the microtubule [6], we estimate that
approximately 10−19 watts can be supplied to the structure. However, the amount of
energy stored in an oscillator driven with a powerP and relaxation timeT is of the
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order ofP T . This implies that the average stored energy in the microtubule from
metabolic processes associated with addition of heterodimers will be about eight
orders of magnitude below kT, and any resulting oscillations would be swamped
by random thermal agitation. We have not considered transverse oscillations, but
since they would result in displacement of more of the surrounding water, we would
anticipate higher viscous losses.

4. Discussion

Pokorný et al. have reported electrical signals from yeast cells at 8.18 MHz with
extremely sharp bandwidth (< 0.01 MHz), which they attribute to microtubule
oscillations [2].

We question the reliability of these observations on several accounts. The sig-
nals were very small and they occurred in a part of the spectrum that is widely used
for communications. (In particular, there is a major communications band between
8.100 and 8.195 MHz). Narrow band signals in the Megahertz range are charac-
teristic of technological, not biological sources. Moreover, signals were sometimes
observed from pure sucrose solution [2], which further clouds their significance.

Retrieving resonances in the microtubule would require an extraordinarily weak
coupling between the cylinder and the surrounding fluid. In hydrodynamic terms,
this would correspond to nearly perfect ‘slip’ boundary conditions at the surface.
This is strongly disagrees with standard theories of hydrodynamics of colloidal
particles and biological macromolecules, some of which (e.g. the Debye theory
for dielectric relaxation) have been relied on for generations of scientists to inter-
pret experimental data (e.g. [7, 8]). It also disagrees with other theoretical studies
on dynamics of microtubules (e.g. [9]) which assume stick boundary conditions,
and which refer to extensive experimental data on the motional dynamics of mi-
crotubules. Near-perfect slip boundary conditions would have resulted in bizarre
experimental results that could not be interpreted by the theory.

Perhaps some internal modes of vibration in the microtubule might not be as
strongly coupled to the surrounding fluid as are vibrations of the whole structure.
However, dissipative processes must still occur, and any reasonable theory must
take them into account. The theory [1] assumes a one-dimensional model and
explicitly does not consider internal modes.

Other experimenters have reported sharp resonances or resonance-type effects
of radiofrequency energy on biological structures in aqueous surroundings (e.g.
[10, 11]). However these results were ultimately nonreproducible and presumably
artifact. Theories developed to interpret those findings also neglected dissipative
effects. Many things seem possible if one does not consider losses in a system.
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