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Dynamic Approach to DNA Breathing
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Abstract. Even under physiological conditions, the DNA double-helix spontaneously denatures
locally, opening up fluctuating, flexible, single-stranded zones called DNA-bubbles. We present a
dynamical description of this DNA-bubble breathing in terms of a Fokker-Planck equation for the
bubble size, based on the Poland-Scheraga free energy for DNA denaturation. From this description,
we can obtain basic quantities such as the lifetime, an important measure for the description of the
interaction of a breathing DNA molecule and selectively single-stranded DNA binding proteins. Our
approach is consistent with recent single molecule measurements of bubble fluctuation. We also in-
troduce a master equation approach to model DNA breathing, and discuss its differences from the
continuous Fokker-Planck description.
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1. Introduction

The equilibrium structure of a DNA molecule under physiological conditions is
the Watson-Crick double helix. Its stability is effected by Watson-Crick H-bonding
and base-stacking [1]. While Watson-Crick base-pairing contributes only little to
the stability, it guarantees the high specificity under physiological processes such
as transcription and replication due to the key-lock principle according to which the
base A exclusively binds to T, and G to C. Base-stacking, the major contribution, in-
troduces hydrophobic interactions between adjacent, planar pairs of bases [1, 2]. By
variation of temperature or pH-value in solution, double-stranded DNA (dsDNA)
progressively denatures, producing regions of single-stranded DNA (ssDNA), until
the double-strand is fully molten. The melting temperature Tm defines the tempera-
ture at which half of the DNA molecule has denatured [1, 3]. In Figure 1, we show
a sketch of the progressive melting of dsDNA.
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Figure 1. Fraction θh of double-helical domains within the DNA as a function of temperature.
Schematic representation of θh(T ), showing the increased formation of bubbles and unzipping
from the ends at increased temperature, until full denaturation has been reached.

Due to ambient thermal fluctuations, even under physiological conditions, ds-
DNA can spontaneously unzip locally, producing comparatively flexible, single-
stranded DNA-bubbles that are of a few tens of base-pairs in size [4]. The size of a
DNA-bubble changes constantly by successive unzipping or zipping of base-pairs
at the zipping forks where the single-stranded bubble connects to the intact double-
helix. As we assume that the (un)zipping dynamics (single zipping events running
off on the scale of a few tens of µsec [5]) is slower than the Rouse relaxation time
∼ n2 of the rather short ssDNA strand making up the bubble [6] (i.e., we neglect
dynamic feedback from the rest of the DNA molecule), this DNA breathing can be
interpreted as a random walk in the one-dimensional coordinate n, the number of
denatured base-pairs. In what follows, we first propose a continuum description to
bubble dynamics in terms of a Fokker-Planck equation, that describes a stochas-
tic process for the bubble size n in a potential given by the Poland-Scheraga free
energy. After introducing some essential features of this model, we compare the
continuum approach to the probably more natural choice of a discrete approach in
terms of a master equation. The latter offers the advantage of directly including the
loop initiation barrier.

2. Poland-Scheraga Free Energy, One-Bubble Case

The Poland-Scheraga model for DNA melting, in an Ising-type approach based on
earlier ideas by Kittel [7] and Zimm [8], captures the competition between energetic
stacking interactions of the intact double-stranded portion of the DNA molecule
with the entropy gain from the more flexible ssDNA loops [3, 9–13].1
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The statistical weight for the dissociation of base-pairs includes an enthalpic
contribution Hi j from unstacking base-pair i from base-pair j and an entropic
contribution Si j for positioning of unbound bases. Both give rise to the Gibbs
free energy Gi j = Hi j − T Si j , that is tabled for all possible combinations of
neighbouring pairs of base-pairs [14]. Melting profiles are usually measured through
UV-absorption, revealing quite precise data that can even be used to distinguish
coding from non-coding regions in a genome [15, 16].

For a homopolymer, we define γ ≡ βGii/2 measuring the Gibbs free energy
per broken base-pair in units of kB T (≡β−1). The melting temperature Tm is then
defined through γ (Tm) = 0.2 To interrupt the double helix to initiate a bubble, that
is bordered by helical domains (compare Figure 2), co-operative interactions have
to be overcome, to release base-stacked and paired nucleotides. This is expressed
by an additional weight σ0 ≡ exp(−γ0), and varies between a few 10−2 to 10−5, for
different temperatures [11, 12, 17, 18]. Finally, the formation of a flexible bubble
includes an entropy loss corresponding to the returning probability of a random walk
[3, 11–12]. For DNA-bubbles, one usually assumes the form F(n) = (n + D)−c

where the offset D accounts for persistence length effects [19], and c is the loop
closure exponent [3, 11, 10]. For D, a standard choice is D = 1 [14], while the
value of c depends on the boundary conditions; for a dilute solution, c ≈ 1.76 is
assumed [14], while other values have been suggested [20, 21]. For the dynamics
of bubbles the exact value of c is indeed of lesser importance [17, 22]. Collecting
all contributions, we obtain for the statistical weight �(n) of a single bubble of size
n in a homopolymer the expression

�(n) = σ0e−nγ (n + 1)−c. (1)

Consequently, the total free energy of the bubble is given by

βF (n) = − log �(n) = nγ (T ) + γ0 + c log(n + 1), (2)

in units of kB T . The free energy landscape is portrayed in Figure 3 for various
temperatures for the case of an A-T-bubble.

Figure 2. Denaturation bubble of size n = 9 bordered by helical segments.
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Figure 3. The variable part of the bubble free energy (2) as a function of the bubble size n,
T = 37 ◦C (γ ≈ 0.6), Tm = 66 ◦C (γ = 0), and T = 100 ◦C (γ ≈ −0.5). In the latter case, a
small barrier precedes the negative drift towards bubble opening as dominated by the γ < 0
contribution.

3. Continuous Fokker-Planck Equation Approach

Following the continuum approach suggested in reference [22], we combine the
continuity equation

∂ P(n, t)

∂t
+ ∂ j(n, t)

∂n
= 0 (3)

for the probability density function P(n, t) to find the bubble with size n at time
t and the probability current j , with the constitutive expression for the associated
current (compare the discussion in reference [23]),

j(n, t) = −K

(
∂ P(n, t)

∂n
+ P(n, t)

kB T

∂F

∂n

)
. (4)

Here, it is assumed that the potential exerting the drift is given by the bubble free
energy (2), and we imposed an Einstein relation of the form K = kB T µ, where
the mobility µ has dimensions [µ] = sec/(g · cm2), and therefore [K ] = sec−1

represents an inverse time scale.3 Combining Eqs. (2)–(4), we obtain the one-
dimensional Fokker-Planck equation

∂ P(n, t)

∂t
= K

(
∂

∂n

{
γ + c

n + 1

}
+ ∂2

∂n2

)
P(n, t). (5)

The contribution from the loop closure, c/(n + 1), decreases quickly with n, and
can thus be viewed a correction term to the constant drift exerted by the free
energy term γ per unzipped base-pair. In fact, without the loop closure term,
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Eq. (5) exactly equals the expression used to fit the fluorescence correlation data in
reference [5].

The Fokker-Planck Eq. (5) describes the relative diffusion of the two zipper forks
where the ssDNA bubble connects to the dsDNA helical segments. At temperatures
T < Tm below the melting temperature, the drift from the free energy biases this
diffusion towards n = 0, that can be included as an absorbing boundary condition.
The lifetime of a bubble can then be obtained from the corresponding first passage
time problem. In Figure 4, we plot the typical lifetime of a bubble as function of
the initial bubble size n0, both for physiological temperature and close to Tm . In
the physiological regime, the bubble lifetime grows approximately linearly with
n0. This can be understood from the first passage time density

f (0, t) = n0√
4π K t3

exp

{
− (n0 − Kγ t)2

4Dt

}
, (6)

that is valid for the homopolymer bubble when the loop closure factor is neglected
in comparison to the constant drift γ . The corresponding mean first passage time
� = ∫ ∞

0 f (0, t)tdt = n0/[Kγ ] indeed scales linearly in n0. Conversely, close to
Tm and neglecting the loop closure, the drift-free first passage calculation leads to
� 	 n2

0, corresponding to the roughly parabolic form for the lifetime in Figure 4.

Figure 4. Characteristic bubble closing times τ as a function of initial bubble size n0 for
an AT-homopolymer, obtained from the Fokker-Planck Eq. (5) by numerical integration. At
T = 37 ◦C, the result for c = 1.76 is compared to the approximation c = 0 which leads
to somewhat larger closing times. The analytical solution for c = 0 compares well with the
numerical result, the slight discrepancy being due to the reflecting boundary condition applied
in the numerics, in comparison to the natural boundary condition at n → ∞ used to derive
Eq. (6). At the melting temperature Tm = 66 ◦C, the closing times for the values c = 1.76 and
c = 2.12 can be distinguished.
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4. Discrete Master Equation Approach: Including the Bubble Initiation

Let us now compare the continuum approach from the previous section to a discrete
master equation approach. A priori, there are two major advantages to a discrete
formulation: (i) it is closer to the actual physical situation, as the co-ordinate n
of (un)zipping base-pairs is in fact discrete; (ii) the master equation allows us to
explicitly include the loop initiation factor σ0, in contrast to the continuous Fokker-
Planck Eq. (5), in which the gradient of the free energy appears, and the constant
σ0-factor drops out. Thus, in Figure 5, we display the free energy including the
rather sharp jump between n = 0 and 1.

The probability of finding a bubble of size n at some time t , P(n, t), is governed
by the master equation

∂

∂t
P(n, t) = t+(n − 1)P(n − 1, t) + t−(n + 1)P(n + 1, t)

− (t+(n) + t−(n))P(n, t), (7)

whose forward and backward transfer coefficients t±(n) (opening and closing rates)
are defined in terms of the partition function (1) through

t+(n) = k
�(n + 1)

�(n)
= ke−γ

(
1 + n

2 + n

)c

, n ≥ 1; (8)

Figure 5. Full free energy �(n) = − ln �(n) including the loop initiation energy σ0 as function
of bubble size n, for two different temperatures, i.e., u = exp(−γ ). The full lines correspond
to the full expression with loop closure factor, whereas the dashed lines neglect the latter. We
used the loop initiation factor σ0 = 10−3.
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for the forward rate (including the rate t+(0) = 2−ckσ0e−γ for bubble opening),
while the backward transfer coefficients are chosen in the form

t−(n) = k. (9)

The choice of relations (8) and (9) ensures that the dynamics fulfils the detailed
balance condition and the system eventually reaches equilibrium. To include the
bubble boundaries appropriately, we impose the reflecting boundary conditions

t+(m = M) = 0; t−(m = 0) = 0, (10)

guaranteeing that the bubble size does not exceed the value M nor takes on negative
values.

As derived in reference [24] in detail, the master Eq. (7) can be solved conve-
niently by the eigenmode expansion

P(n, t) =
M∑

p=0

cp Q p(n) exp
(−t/τp

)
. (11)

Neglecting the loop closure factor, an exact solution can be found, whereas in the
general case, a numerical solution, for instance with MatLab, is straightforward. The
zeroth term of the eigenmode expansion (11) represents the equilibrium distribution

Peq(n) = Q0(n), (12)

that is time-independent. All higher order contributions (p = 1, 2, . . .) describe
the exponential relaxation of modes whose relative contribution cp is determined
by the initial condition.

An important experimental quantity is the autocorrelation function A(t) =
〈m(t)m(0)〉 [5]. It can be written in the form [25]

A(t) =
∫ ∞

0
exp

(
− t

τ

)
f (τ )dτ, (13)

where we use the spectral density of relaxation times in discrete form, f (τ ) =∑M
p=1 Apδ(τ − τp), corresponding to the discrete set of time-eigenvalues τ−1

p ; and
the result

Ap =
( ∑

n

nQ p(n)

)2

(14)
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Figure 6. Spectral density f (τ ) of relaxation times τ for two different u = exp(−γ ). Top: u =
0.6 well below Tm exhibiting a pronounced multi-exponential behaviour; bottom: u = 0.9 close
to Tm with clear dominance of one (the largest) relaxation time mirroring a single exponential
behaviour typical for a two-state system. Notice the different scales on the abscissae. The solid
lines correspond to the case including the loop closure factor, while the dashed lines neglect
the entropy penalty from loop closure. We chose M = 20 and σ0 = 10−3.

for the amplitudes Ap. In Figure 6, we show the spectral density f (τ ) for two dif-
ferent temperatures, demonstrating the pronounced multi-exponential behaviour
well below Tm , whereas close to Tm , the spectrum is approximately that of a
two-state system. Note the change brought about by neglecting the loop closure
factor.

A related quantity of interest is the longest relaxation time

τrelax = τ1, (15)
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that determines the characteristic time the system takes to equilibrate. This τrelax

can be used to characterise the behaviour of the bubble as function of the system
parameters. For instance, we display τrelax in Figure 7 as function of γ , and for two
different sizes of the bubble zone.

Figure 7. Longest relaxation time τrelax as function of statistical weight u = exp(−γ ). Top:
shorter bubble zone with M = 10; bottom: longer bubble zone, M = 20. Notice that the de-
pendencies on σ0 and the loop correction is weaker for the longer bubble zone. On approaching
the melting temperature Tm , the relaxation time diverges.
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5. Discussion

We presented two dynamical approaches to DNA breathing, the incessant unzipping
and zipping of single-stranded DNA zones within a double-stranded DNA. Both
models reduce the full three-dimensional dynamics to an effective, one-dimensional
reaction coordinate, that being the bubble size n. This is legitimate, as, due to
the relatively small characteristic bubble size combined with the relatively long
time scales for (un)zipping of a base-pair, n becomes the slow variable of the
dynamics, while the Rouse modes of the bubble (and, for the short DNA used in
typical experiments, even the entire chain) equilibrate much faster. We confined
our discussion to a single bubble, keeping in mind typical experiments on designed
DNA. However, also for unconstrained DNA, this assumption is expected to hold
well for temperatures below the melting temperature, as statistically the bubbles
can be assumed to be independent due to σo.

The first approach corresponds to a continuum Fokker-Planck equation gov-
erning the probability density function P(n, t), corresponding to the probability
P(n, t)dn (n ∈ R

+
0 ) for finding a bubble size in the interval n, . . . , n + dn at

time t . Mathematically, this Fokker-Planck equation can be treated easily, and the
first passage time problem neglecting the loop closure correspond to the stan-
dard cases of constant drift and zero drift diffusion. The second approach reflects
more the physical nature of the problem, i.e., the discrete steps of sequential
base-pair (un)zipping. To some extent, this is at the expense of the mathemat-
ical handling. To allow for an easy numerical treatment of the master equation
controlling the time evolution of the discrete probability P(n, t) (n ∈ N0), we
introduced an eigenmode expansion that can be implemented in programs like
MatLab. Apart from being the more physical way to describe the bubble fluctua-
tions, the master equation approach allows us to explicitly include the loop initiation
factor σ0.

In the discrete model a base-pair is assumed to be in one of two states (open or
closed); this assumption is justified for a rather short-ranged interaction between
bases. In the continuum model the base-pair interaction is assumed to be spatially
smooth and of somewhat longer range, which justifies the use of a continuum free
energy landscape describing the breathing process.

We demonstrated the influence of typical system parameters such as temperature
(that can be effectively changed by applying an external torque [17]), co-operativity
factor of loop initiation, initial bubble size, and loop closure factor. To visualise these
effects, we made use of the relaxation time spectrum and the longest relaxation time.
We believe that this model is a physical but still transparent approach, elucidating
some of the essential features of DNA breathing. While we chose to concentrate on
the experimentally relevant, simplest case of a homopolymer one-bubble situation,
the more general case can be included in a straightforward manner. We are currently
expanding the model to include the interaction of breathing bubbles with proteins
that selectively bind to single-strand DNA-binding proteins [24], that turn out to
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compete in concern of their binding dynamics with the lifetime of DNA-bubbles
[26].
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Notes

1. The persistence length of dsDNA is roughly 50 nm (≈ 150 bp), in comparison to 2.5 nm for
ssDNA.

2. For an A-T homopolymer at 37 ◦C and standard salt, γ ≈ 0.6, while for a G-C homopolymer
γ ≈ 1.46. The corresponding melting temperatures are Tm(AT ) ≈ 67 ◦C and Tm(GC) ≈ 103 ◦C.

3. Note that µ is the mobility of the zipper forks, and therefore not related to the bulk mobility
of the bubble-ssDNA. In our model, this parameter sets the time scale of the dynamics, and has
to be calibrated from experiments or quantum chemical calculations. Note also that we assume
for simplicity that K is independent of n. This latter assumption will have to be changed if
heteropolymer effects are considered. For a detailed treatment, see reference [27].
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