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Abstract. In the present study a model for the compactification of the 30 nm chromatin fibre into higher
order structures is suggested. The idea is that basically every condensing agent (HMG/SAR, HP1,
cohesin, condensin, DNA–DNA interaction . . . ) can be modeled as an effective attractive potential of
specific chain segments. This way the formation of individual 1 Mbp sized rosettes from a linear chain
could be observed. We analyse how the size of these rosettes depends on the number of attractive
segments and on the segment length. It turns out that 8–20 attractive segments per 1 Mbp domain
produces rosettes of 300–800 nm in diameter. Furthermore, our results show that the size of the
rosettes is relatively insensitive to the segment length.
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1. Introduction

The structure formation of chromatin is studied on many different scales [1]. Inter-
esting properties can already be obtained from models of the formation of the 30 nm
fibre [2–7]. Chromatin structures beyond the level of the linear array of nucleosomes
play an essential role in gene regulation, repair processes and pathogenic rearrange-
ments in eukaryotes. Changes in functional activity are assumed to be tightly cou-
pled to changes in the chromatin structure. Thus, a full understanding of genome
function is not possible without detailed investigations of the functional chromatin
structure and its control, requiring appropriate tools for quantitative analysis.

The exact details of the 3D folding of the chromatin fibre of a chromosome are
still controversial. Experiments are highly difficult due to the following limitations.
Aggregation is promoted by the high cellular concentration and charge of chro-
mosomal material. Furthermore, many structures are smaller than the resolution of
the light microscope (roughly 200 nm) and therefore can only be seen by electron
microscopy, which in turn causes problems associated with preserving structure
and recognition of the 3D folding of specific chromatin structures.
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It is generally agreed upon that in eukaryotes the double helix is coiled locally
around nucleosomes and globally into distinct nuclear territories [8]. The levels in
between are still under discussion [9]. There are several models for the different
stages of compactification: (i) structures, in which strings are coiled into solenoids
(of roughly 30 nm diameter) or zig-zag tubes [2], which in turn again form higher-
order structures [10]; (ii) loops of about 50–150 kbp which are attached to the
peripheral lamina or other internal structures, such as skeletons/scaffolds [11] or
factories [12]; and (iii) combinations of the above, such as helical coils and radial
loops [13] or helical coils and random folding [14].

To investigate the folding and accessibility of virtual active/inactive chromatin
domains within the nuclear volume, our model assumes attractive sites at some
locations along the chain. The results of our simulation favour the ‘Multi Loop
Subcompartment’ (MLS) model developed in the group of J. Langowski [15,16]
for the overall structure of chromosome territories.

According to the MLS model, the experimentally observed focal structure of
chromosomes (for an overview see [8, 17]) is described by rosettes of several 100
kbp loops assuming a 30 nm chromatin fibre. Adjacent rosettes are connected by
chromatin linker segments with the same DNA content as one loop. Approaches
based on the isochore model also predict the formation of rosettes of about 1 Mbp
[18].

It has not yet been understood how these rosettes form dynamically. We have
developed a model that not only shows that the higher order structures formed are
indeed rosettes, but also explains the formation process and predicts quantitative
results for certain quantities of interest such as formation time and rosette diameter.
Finally, the model predictions will be compared with experimental light microscopic
data.

2. The Polymer Model

In this work the continuous backbone mass model [19] is used. The model inter-
polates between the united atom model and the bead-spring model. In contrast to
these two models it uses non-spherical force fields for the non-bonded interaction.
The main idea of this approach with a more general form of the force field is to
generalise the united atom model in a way that larger atom groups are combined
to one construction unit, but the possible anisotropy of these groups is still taken
into account. The simplest anisotropic geometrical object one can think of is an
ellipsoid of rotational symmetric form and thus it is considered as the interaction
volume of the chemical sequences in our model.

As one wants the force field to degenerate into a sphere with increasing distance,
we use a confocal force field inside this interaction volume:

Hinter = Vabs

(
d (p)

1 + d (p)
2

2
− c

)
, (1)
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where d (p)
1 and d (p)

2 denote the distance of the point p to the focal points of the
ellipsoid and Vabs is the absolute potential. For convenience we use only a repulsive
part

Vabs(r ) ∼ r−6. (2)

The mass of the building units is distributed between the focal points of the
ellipsoids in the hard core region of the confocal potential.

The main ingredient of the model is the mass matrix of our rod-chains. In order
to construct it, we must first calculate the Lagrangian of a single rod Li = Ti − Vi

with the kinetic energy Ti and the potential energy Vi . The subindex i marks the
position of the rods in the chain. This one-dimensional homogeneous rod i has
length li starting at �ai and ending at �bi . If we suppose that the rods all have the
same mass m and that the velocity of the rod mass scales linearly with the position
between the boundaries of the rod, the kinetic energy can be written as

Ti = 1
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Adding the single terms of the rods building the chain, we get the Lagrangian L
of the whole rod-chain. The equations of motion of the chain can be calculated from
the Lagrange equations of the second kind. Since the equations of motion separate
in each direction, we have only to solve three tridiagonal (N +1)×(N +1) matrices
per chain which consist of N rods per time step of the form

W�̈x = �F (3)
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ẍ1

ẍ2
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 (4)

with the force Fi j on the coordinate j of the flexible point i of the chain

Fi j = −∂Vi

∂ j
(5)

and ẍi denoting the accelerations of the flexible points of the chain. The flexible
points are the link points of the ellipsoids and the end points of the rod-chain. The
sub-indices mark the positions in the chain: 0 and N + 1 are the end-points of the
chain and the numbers between them denote the linking points of rods in the chain.
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The bonded interactions between neighboring units are given by harmonic length
and angle potentials:

Hbond = 1

2
k(r − r0)2 (6)

Hangle = 1

2
kθ (cos θ − cos θ0)2 (7)

with bond length r and bending angle θ . Here r0 and θ0 denote the mean values.

3. The Biological Model

The genome content of a typical human chromosome is on the order of several hun-
dred Mega base-pairs (e.g. 245 Mbp for Chromosome 1). To handle this amount of
data on a computer, course-graining is mandatory. On a large scale, one identifies a
coiled state of a chromatin fibre as a 1 Mbp bead (Figure 1). Experimental data yield
a diameter of a 1 Mbp domain of about 300–800 nm [17]. The aim of this analysis
will be to see whether computer simulations of chromatin fibres in interphase yield
the known size and assumed structure of such a coil.

On a more detailed level it is interesting to see the inner structure of such a coil.
For a pure 30 nm chromatin fibre one assumes there are approximately 40 segments
of about 30 kbp per bead. One instance of the model would be the ‘10 loop model’,
where the segments form a rosette of 10 loops. Each loop consists of 120 kbp, so
that each segment has 30 kbp. The 10 loop domains are interconnected by 120
kbp linkers. Thus, among every four segments there are believed to be attraction
sites which couple the segments and thus lead to the formation of a non-random
structure. The MLS model and simulations thereof assume a rosette structure from
considerations of the bead diameter and weight. It considers the attractive sites to
be connected in the centre of the rosette at the base segments of the loops.

Figure 1. Left: Course-grained model of a chromosome. A typical bead is about 300–800 nm
in diameter; the linker segment length is around 300 nm and consists of 30 kbp. Chromosome
1 has approximately 245 such coils. Right: Detailed structure of a blob. The 10 loop model
suggests a rosette-like structure.
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Our model is more general than the MLS-model. We want to look into the forma-
tion of any possible higher order structure by starting out with a linear chain. This
chain has repulsive and attractive segments. The attractive segments correspond to
that part of the chromatin fibre which is affected by some condensing agent. We
model the chain such that rosette formation is possible, but not a priori assumed
and compulsory. Furthermore, we believe it to be too restrictive not to allow the
breaking up of bonds between attraction sites. Therefore, we assume a Lennard-
Jones potential. Since there is no reliable data for the Kuhn length of the 30 nm
fibre, we simulate the two extreme cases (150 and 300 nm [20]) and see whether
there are any significant differences in the results of the interesting observables.

The idea of having attractive elements is quite common in biology. For example
the polymerization of microtubules in which tubulin dimers are able to polymerise
only if they are first complexed with GTP. Similarly, the pre-replication complexes,
that triggers initiation of DNA replication, must first complex with ATP in order to
recognize and bind to vacant origins (that work as receptors) in the DNA double
helix [21]. The assumption of attractive sites in our case is also biologically justified.
For G/Q-R bands, one has shown that HMG/SAR binding proteins act as mediators
of attraction [22, 23]. For hetero/euchromatin, the HP1 protein has been associated
with chromatin linking [24, 25]. Furthermore, cohesin and condensin play a crucial
role in chromosome compaction [11, 26]. The type of condensing agent is not our
primary concern, though. Our model also holds if the attraction is mediated by
DNA–DNA interaction [27, 28]. Thus, we do not claim that the formation of higher
order structures can only occur with a certain type of condensing agent, but rather
we look at the general aspect of all agents, namely that they make a certain part of
the chromatin fibre effectively attractive.

Our model extracts the underlying idea in every case, namely that the chromatin
fibre can be modeled as a multiblock copolymer. Whether you associate the different
polymer blocks with GC rich and AT rich regions [18] or with other chromatin
characteristics is not of primary importance for our model. A multiblock copolymer
containing two alternately located types of blocks can form a single-chain string
of loop clusters called micelles [29]. A micelle consists of a certain number of
loops. The ends of the loops formed by blocks of one type are located close to each
other.

Micellar structures have been thoroughly studied for diblock copolymers and
ionomers [30, 31]. Large multiblock copolymers form single-chain micelles, and
small diblock copolymers form multichain micelles. The formation of loops and
their organisation into micelles are basically entropically unfavorable processes,
because the number of possible polymer conformations decreases, but it occurs
nonetheless in multiblock copolymers because of the energetically favorable pro-
cesses of repulsion between unlike monomer units and/or attraction between like
monomer units [32, 33]. In an aqueous solution, for example, this means that the
hydrophobic parts of the copolymer concentrate in the centre of the micelle and the
hydrophilic parts form the loops.
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With the abstraction to multiblock copolymers, this leads us to the parameters
and potentials we use in our simulations:
– Segment diameter: 30 nm.
– Segment length: two different simulations

(a) 30 kbp = 300 nm each,
(b) 15 kbp = 150 nm each.

– The harmonic bond potential is taken to be

Us(l) = kT

2δ2

(
l − l0

)2
(8)

with δ = 0.1 and l0 = 300 nm at 310.15 K.
– The angular and torsional potentials are taken to be 0. On this scale the chain is

flexible.
– The repulsive segment potential is

Urep(r ) = ε

(
σ

r − rsegment

)6

(9)

with ε = 0.14kbT at body temperature, σ = 15 nm and rsegment = 15 nm being
the fibre radius.

– Cutoff for the repulsive potential is rc = 8 nm (after the 30 nm fibre diameter).
– The attractive segment potential

Uattr(r ) = 4ε

[(
σ

r − rsegment

)12

−
(

σ

r − rsegment

)6]
(10)

with ε = 7kbT at body temperature and σ = 30 nm.
– Cutoff for the Lennard–Jones potential is rc = 80 nm (after the 30 nm fibre

diameter).

4. Simulation Results

We look into the structure formation of a 1 Mbp domain in interphase. The final
structure turns out to always be a rosette. We take two non-reactive linkers at the
end and an attraction site after n successive segments. The number n of segments is
the varying parameter. The diameter of the rosettes will be analysed as a function of
this parameter. We get a starting configuration as shown in Figure 2. The attraction
agents are marked as spheres. The attractive sites are of the same length as the
repulsive ones. The intermediate and final structures are shown in the same figure.

In Figure 3, we show the average formation time of a rosette. Plotted are the
minimum, average and maximum distance of the attractive Lennard–Jones seg-
ments. The minimum distance drops almost instantly, implying that two attractive
segments immediately find each other. After an initial rise, which is due to the ran-
dom and hence mostly nonphysical starting configuration, the maximum distance
decays over a time of about 10 000 MD-Steps. After this amount of time the distance
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Figure 2. Left: We see the starting configuration of a 60 segment chromatin fibre. The spheres
represent the condensing agents. Center: An intermediary configuration. This state of mainly
two clusters of approximately equal size turns out to be a metastable state. Right: In the final
state all attractive segments are concentrated in the centre. A rosette has formed.

Figure 3. Shown is the average formation time of a rosette. From the minimal distance we
conclude that two segments ‘snap’ very fast. After about 10 000 MD steps, a complete rosette
is formed.

drops no more. Hence all attractive segments have found each other. Therefore the
fully equilibrated structure is shown to be a rosette. With the given parameters of ε

and σ , we observe a formation time of about 48 ms. Note that this is the formation
time based on the simulation of a single rosette. It remains to be seen how this time
changes when a larger region is analysed.

A crucial question is obviously how many attractive sites are required to form
rosettes of the size observed under a microscope. In order to analyse this, we have
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Figure 4. The diameter of the rosettes depends on the number of attractive sites. The different
Kuhn lengths are only of minor importance.

performed simulations for regular patterns of attractive/repulsive segments. We are
aware of the fact that a regular pattern is a severe restriction, but it allows us to draw
conclusions with less statistics than for random patterns. Furthermore, it should pro-
vide a first insight whether rosettes of the required size are possible in the first place.

In Figure 4, we have plotted the radii of gyration for different regular patterns and
different Kuhn lengths. The circles represent the 300 nm segment and the squares
the 150 nm segment. This is the accepted range for the Kuhn length of the 30 nm
fibre. Thus, by taking the two extreme cases we can study the effect of the stiffness
of the chain.

The following patterns have been simulated:
1. 300 nm segment:

– attractive site every segment
– attractive sites every 3 segments
– attractive sites every 5 segments
– attractive sites every 7 segments
– attractive sites every 9 segments

2. 150 nm segment:
– attractive site every segment
– attractive sites every 6 segments
– attractive sites every 10 segments
– attractive sites every 14 segments
– attractive sites every 18 segments
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Table I. Loop sizes for different Kuhn lengths

L segment Nattractive Nintermediary Loop size

300 7–19 7–3 90–210 kbp

150 7–19 14–6 90–210 kbp

As expected we see a clear increase in the radius of gyration with larger loop
sizes. For example, for the 300 nm Kuhn length with a loop size of 7 segments
(with a total number of 60 segments per rosette we get a ratio of about 0.12), we
obtain a radius of gyration of about 800 nm. We will see later that the radius of
gyration corresponds very well to the actual diameter. So for a given (experimental
[34]) diameter of 300–800 nm we need 7–19 attractive segments, i.e. every third
to every eighth segment, for the 300 nm Kuhn segment. Therefore we have loop
sizes of 90–210 kbp (i.e. 3–7 segments), with the optimal value around 120 kbp
(four segments) per loop. This result is well supported by the literature [12, 35–37].
The different Kuhn lengths produce only a slight difference in the diameter. The
main parameter is clearly the number of attractive segments. Table I illustrates the
optimal values for rosette diameters of 300–800 nm. Lsegment indicates the segment
length, Nattractive the total number of attractive segments per rosette and Nintermediary

the number of repulsive segments between the attractive ones.
Plotting the two-dimensional average monomer concentration yields Figure 5.

The average is taken from 10 000 uncorrelated configurations. The data in the figure
corresponds to the 300 nm segment with an attractive site every five segments. We
see that the 1 Mbp domain has a diameter of about 600 nm. This corresponds exactly
to the radius of gyration. Hence the radius of gyration is a very good indicator of
the actual diameter. It is clear that the centre cannot be the most likely position for
the monomers since we have excluded volume. Furthermore, the attractive sites are
all within each other’s potential minimum so that we have a smeared-out centre
where the attractive sites are. Moving farther out to the periphery, we observe a
higher monomer concentration. This is the region dominated by the loops.

To compare the modeled configurations with the outcome of light microscopy, in
Figure 5 (top), projections of virtual microscopy image data stacks are shown. This
approach consisted of a digitisation of the 30 nm thick segments (about 10 points per
30 kbp sized segment were digitised) by a grid of 4.9 ×4.9 ×10.5 nm voxel spacing
and a convolution of the digitised stacks with a measured confocal point spread
function (PSF) (with a full width at half maximum (FWHM): FWHMx = 279 nm,
FWHMy = 254 nm, FWHMz = 642 nm).

To further narrow the number of possible attraction sites per 1 Mbp domain we
plot the spatial versus the genomic distance in Figure 6. The data are fitted against
the power law y = axb for the 300 nm/segment chains, where y is the spatial
distance, x the genomic distance and a and b the fit parameters. The results of the
fits are shown in Table II.
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Figure 5. Left: 2-dimensional histogram of the projection of the average monomer concentra-
tion of a rosette with a diameter of about 600 nm. The grey values are the respective normal-
ized probabilities. Right: Projections of virtual microscopy image data stacks of one simulated
rosette (before convolution with a measured confocal point spread function (bottom) and after
convolution (top)).

Figure 6. Shown is the spatial vs. the genomic distance of a 1 Mbp domain. The exponents
yielded by the fits clearly favour about 11 attractive sites per 1 Mbp domain. The oscillations
in the data are due to the rosette nature of the 1 Mbp domain.
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Table II. Fit parameters for y = axb

Nattractive a b

5 177.74 ± 0.86 0.1535 ± 0.0014

7 148.05 ± 0.76 0.2075 ± 0.0015

11 106.97 ± 0.68 0.3031 ± 0.0019

19 66.60 ± 0.53 0.4425 ± 0.0024

50 46.06 ± 0.38 0.5509 ± 0.0024

The exponents yielded by the fits show that about 11–12 attractive segments per
1 Mbp domain are needed in order to exhibit a non-random walk behaviour with an
exponent of about 1/3. Therefore, the number of attractive sites suggested by the
evaluation of the diameter, namely about 11 per 1 Mbp domain, is consistent with
the number proposed by the exponent. The exponent of 0.32±0.02 was obtained by
Münkel [15] based on the experiments by Yokota et al. [38] for genomic distances
of several Mbps. The parameter range yielded by our simulation results is therefore
in good agreement with experiment.

5. Discussion

In summary, we have found that our model, which uses only a linear chain with
attractive and repulsive segments, describes the formation of rosettes without any
further constraints. It turns out that the different Kuhn lengths are only of minor
importance. The main parameter is the number of attractive segments. The best
candidates for producing rosettes with a diameter of 300–800 nm are: every third to
eighth segment attractive for the 300 nm Kuhn length and every sixth to sixteenth
segment attractive for the corresponding 150 nm Kuhn length, thus producing loop
sizes of 90–210 kbp. Furthermore, we have shown that the radius of gyration is a
convenient observable for the actual diameter. Plotting the spatial versus genomic
distance of our 1 Mbp rosettes narrowed the parameter range even more and showed
that we are in good agreement with experiment. Thus the optimal size loop predicted
by our model is about 120 kbp, yielding an exponent of 0.3031 ± 0.0019, which is
in good agreement with the literature.
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