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Abstract. We propose a simple criterion based on the Z-score to assess the quality of energy
functions for protein folding: one should obtain Z < −10 for the equilibrium ensemble at about
native conditions. We derive this criterion by studying a Go model with random errors added to the
native interactions. The dependence of the Z-score on the thermodynamic parameters, including the
noise, can be precisely obtained in this case, as the ground state of the model is known exactly. We
apply this criterion to rapidly rule out two otherwise promising pairwise energy approximations. The
advantage of adopting the present criterion is that it is not necessary to know the ground state of an
energy function to assess its quality. It is sufficient to compute the Z-score from a single equilibrium
simulation at around the folding temperature.
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1. Introduction

In attempting to perform protein folding by energy minimization an approxim-
ation of the extremely complex energy of the system must be used. The basic
requirement on an approximate energy function is that, at least for the protein
under study, the ground state must coincide with the native state [1]. However,
in most practical applications one does not know which is the ground state of
the energy function used. Therefore there is the need of a criterion to assess the
‘quality’ of an energy function, namely whether the native state and the ground
state are likely to coincide. An exact criterion has been proposed by Vendruscolo
and Domany [1]. By using their approach it is possible to prove whether or not one
can choose the interaction parameters for a particular form of the energy in order
to assign the lowest energy to known native states of proteins. From this point of
view, the question is not whether energy parameters are better derived by using
knowledge-based or physico-chemical methods [2], but rather whether suitable
parameters exist at all. An alternative, approximate but more easily implementable
criterion, has been proposed by Mirny and Shakhnovich [3]. They adopted the Z-
score, which measures the difference between the energy of the native state and



206 MICHELE VENDRUSCOLO

the average energy of alternative conformations, measured in units of standard
deviations of the energy distribution.

In this paper we give an estimate for the threshold value of the Z-score, namely
a value that gives a reasonable confidence that the energy function used can allow
to fold proteins to their native states. In order to obtain this result, we introduce the
‘noisy Go model’, a Go model [4] with a random error added to each native-like
pairwise interaction. In this model, the energy E of a particular conformation C is

E(C) = −
∑

j>i

[
SijS

N
ij

(
1 − η qij

) − ε Sij
(
1 − SNij

)]
(1)

where S is the contact map of conformation C, SN is the contact map of the
native state, η is a parameter controlling the strength of the noise, q is a uniform
random number in [0, 1] and ε is a positive constant which disfavors non-native
interactions. In this work, the contact map S is set to 1 if the Cα atoms of a pair
of residues are closer than a threshold distance Rc, here set to 8.5 Å, and to 0
otherwise [1]. The main reason to use the Go model with noise is that, at least for
small noise, it is possible to know with certainty the ground state of the system.
We made two assumptions in the noisy Go model of Eq. (1), (i) the noise acts
only upon the native interactions and (ii) the noise is quenched, namely it is fixed
before starting a simulation. All the simulations are made by using a Monte Carlo
(MC) algorithm in real space, as described elsewhere [1]. The procedure is based
on crankshaft moves for individual residues [1], represented by the coordinates of
their Cα atoms. In the rest of the paper we set ε = 0.1 [5].

The Go model [4] was originally proposed to facilitate folding on a computer.
It has been recently the object of renewed attention because it has been argued
that it can correctly describe the dynamics of the folding process [5–7] and the
geometrical properties of native state conformations [8, 9].

In the present work we suggest that an energy function for protein folding
must be characterized by Z < −10 when the average energy is computed on a
suitable set of alternative conformations, or decoys. By ‘suitable’ we mean a set of
decoys that represent the equilibrium ensemble at the thermodynamic conditions
of folding. This result is proved for the Go energy function of Eq. (1) by increasing
the strength η of the noise and by computing the Z-score for ensembles of con-
formations obtained at different temperatures by MC simulations. We suggest that
in practice, in order to test the quality of a given energy function, one can generate
decoys by carrying out a simulation at T either slightly above Tf and check whether
Z < −10 or slightly below Tf and check whether Z < −8. We observe that one
should not be misled by the fact that for some set of poorly chosen decoys one can
obtain Z < −10. Poor decoys are conformation whose statistical weight at T � Tf
is negligible and therefore they do no participate in the folding process.
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Figure 1. Phase diagram (η, T ) of the noisy Go model of Eq. (1) for protein L (LP1), where η
is the strength of the noise and T is the temperature. The line is the folding temperature Tf as
a function of η. For T > Tf the protein is in a random coil state (RC) and for T < Tf it is in
the native state (NS) for η < 1. For η ≥ 1 the ground state (GS) can be different from the NS.
For η > 2, the transition temperature becomes vanishingly small. A similar phase diagram is
found for CI2.

2. Study of the Noisy Go Model

In our MC simulations we considered a fragment of the immunoglobulin light
chain-binding domain of protein L from peptostreptococcus magnus (LP1, PDB
code 2ptl [10]), which has an ubiquitin-like fold. LP1 has no disulfide bonds and
no proline residues. We used a truncated form of 60 amino acids, in which the first
18 amino acids were eliminated, since they are disordered in the NMR structure.

For the model described above, we computed the phase diagram (η, T ) of LP1,
by performing equilibrium MC simulations. The results are shown in Figure 1. For
each point in the (η, T ) plane we averaged over typically 4 different realizations
of the disorder. The errorbars shown are originated from the approximate criterion
used to identify the transition temperature Tf , based on the flex point of the Rg(T )
curve, where Rg is the radius of gyration of the system [5] and also from the
variations due to different realizations of the noise.

For η > 1, in general, the native state (NS) is not the ground state (GS) of
the Go model of Eq. (1) and the ‘folding temperature’ Tf is the temperature in
which the system is stable in its ground state, not in the native state. From simple
considerations, we can expect three different regimes, depending on the strength η
of the noise. The first regime, called here ‘native’ (RN ), is realized for η < 1; in this
case all the native interactions are favorable and the GS coincides with the NS. In
the second regime, called here ‘molten globule’ (RMG) [11], for 1 ≤ η ≤ 2, some
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native interactions are repulsive but the protein chain, by expanding its volume,
manages to accommodate them by maintaining the overall native topology. For
η = 2 the average perturbed pairwise interaction is

[
ηqij

] = 1, where the square
brackets indicate an average over different realizations of the noise, and therefore
it is equal to the energy gain of forming a native interaction. The energy [EN ] of
the native state averaged over the noise is therefore equal to 0. We found that the
typical RMSD between the NS and the GS is of about 6 Å for η = 2.0. In the third
regime, called here ‘random coil’ (RRC), for η > 2, few native interactions are
attractive and they are insufficient to determine a unique structure. In this case, the
protein is typically found in a RC state, as in a good solvent, except that at very low
temperatures one expects a glassy behavior, due to the competition, not sufficiently
weakened by the entropy, between attractive and repulsive interactions. We are not
concerned here in studying the properties of this glass phase.

In principle, since as suggested by the φ value analysis [12, 13], there are
interactions which are more important than others to determine the structure of
the native state, averaging over the disorder presents the following problem. For a
given η, specific assignments of the disorder qij with particularly low values on the
important interacting pairs can lead to a protein with much better folding properties
than another protein for which particularly high values of the noise are assigned to
the same important interactions. This fact can be exploited to investigate the role of
such special contacts in determining the transition state by tuning their interactions
[14]. In the present work, this problem makes it problematic to determine the
precise location of the boundary between RMG and RRC which we argued to be
at η = 2. We have not investigated in detail this aspect here.

The main result of this work is presented in Figure 2 which shows the contour
levels of Z in the (η, T ) plane. In this paper the Z-score is defined as

Z = [EN ] − [〈E〉]
[σ ]

(2)

where all the quantities are averaged over different realizations of the noise. The
angular brackets denote thermal averages and σ is the standard deviation in the
distribution of the energy E of the decoys. For η = 0 this definition coincides with
the standard one [3]. In Figure 2 we are particularly interested in the region of the
(η, T ) plane around the T = Tf (η) curve, which reports the dependence of the
folding temperature Tf on η (see also Figure 1). The location of the contour levels
is determined with a precision in T of about 0.1, due to uncertainty introduced
by the different realizations of the noise. For small η, in the RN regime, one has
Z � −9 at T � Tf . We note that at T = Tf , Z(T ) has a local maximum, due to
the bimodal distribution of the energies. We neglect here in this special case since
it is not relevant within this study. Upon increasing η, the Z-score deteriorates, as
illustrated by the divergence of the Tf (η) curve and the contour level Z = −9.
For intermediate η, in the RMG regime, one has a dramatic change in the behavior
of the Z-score. For η > 1.5 one must go to T 
 Tf to find the native state
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Figure 2. Z-score as a function of the strength η of the noise and of the temperature T . Three
contour levels are shown, for Z = −13,−9 and -7. The folding temperature Tf as a function
of η is also shown for reference (dashed line).

at the bottom of the energy distribution. However, a negative Z-score is in this
case misleading, since the NS is not the GS of the system and the value of the Z-
score is due to the fact that we have considered an ensemble of decoys typical of
equilibrium conditions in which the free energy is very high. For even larger η, in
the RRC regime, the Z-score is always positive.

We now explore the effect of the noise on the kinetic properties of the noisy
Go model of Eq. (1). Our results should be compared with recent simulations of
folding for the Go model without noise [5, 6]. The folding time τ , for η = 0,
is minimal at about T = 0.7, when the thermodynamics folding transition is at
T = 1.30 ± 0.05 (See Figure 3a). The minimum of τ at T = 0.7 arises from
the competition between a rapid energy minimization and the necessity to avoid to
remain trapped in local minima. At each temperature, τ is averaged over 10 traject-
ories. When η > 0 we also averaged τ over 4 different realizations of the noise.
Since in the present model there is no energetic preference about the chirality, we
consider specular structures as equivalent. This means that a successful folding
has a 0.5 probability to reach the specular counterpart of the native state. Upon
increasing η, folding becomes slower on average, as shown in Figure 3b, but still
possible. The deterioration of the dynamical properties of the model for increasing
η parallels the deterioration of the thermodynamic properties discussed above. For
η > 1 there are very few ‘fast tracks’ [5, 6] available for folding. These fast tracks,
which are particular trajectories which allow rapid folding, have been observed in
other studies of folding processes using the Go model [5], that is, for η = 0. We
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Figure 3. (a) Folding time τ dependence on temperature T for η = 0. The folding temperature
is Tf = 1.3 and the folding time is in units of 106 MC steps. (b) Folding time τ dependence
on the noise strength η. The temperature is T = 0.5 in the simulations at η = 0, 0.25 and 1.0
and T = 0.25 at η = 1.44. There are two sources of variation in the observed folding time, the
first is due to different folding trajectories for a given assignment of the noise and the second
to different assignments of the noise.
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have not investigated the dynamical properties in the RMG regime since in this case
the GS is not the NS.

3. Two Applications of the Criterion

Our aim in this section is to assess the quality of two augmented parametrizations
of the simple contact pairwise energy approximation for proteins. In the first one we
discretize the distance dependence of the pairwise energy of interaction between
amino acids. In the second one we separate pairwise contacts according to whether
they form local or non-local interactions.

In the first form that we study the idea is to approximate the continuous distance
dependence of the inter-residue interaction with a series of discrete steps. To this
end, we introduce Ns threshold distances R(k)c and, correspondingly, Ns contact
maps S(k) (with k = 1, . . . , Ns) associated with a certain conformation C of the
protein. We define S(k)ij = 1 if the distance rij between residues i and j is such that
R(k−1)
c < rij < R

(k)
c (with R(0)c = 0) and S(k)ij = 0 otherwise. We define the energy

of a conformation C as

ES(C) =
Ns∑

k=1

∑

j>i

S
(k)
ij W

(k)(si , sj ) (3)

where k runs over the Ns steps of the energy and W(k)(si , sj ) is a parameter spe-
cifying the energy gained when residues si and sj are in contact within the k-th
step. We adopted an all-atom definition of contact with a threshold distance of
Rc = 4.5Å. We need to specify one 20 × 20 symmetric matrix for each one of the
Ns steps in order to specify the energy in our approximation. The total number of
energy parameters is therefore Nw = 210Ns . The standard pairwise contact energy
function corresponds to Ns = 1.

In the second parametrization that we study we distinguish between short and
long-ranged pairwise contacts. In this way we attempt to build in the effect of the
local rigidity of the backbone and the tendency of forming secondary structure.
This is taken into account by introducing a separate set of 210 pairwise energy
parameters for short ranged contacts, where the range is controlled by the separa-
tionD of two residues along the chain. In this approximation, the energy is defined
as

ED(C) =
∑

j>i

S
(S)
ij W

(S)(si , sj )+
∑

j>i

S
(L)
ij W

(L)(si , sj ) (4)

where S(S)ij = 1 if residues i and j are in contact and |i − j | ≤ D and 0 otherwise

and S(L)ij = 1 if i and j are in contact and |i − j | > D and 0 otherwise. In order to
specify this form of the energy we introduced two sets of 210 energy parameters,
W(S) and W(L), for short and long ranged contacts respectively. For D = 2 we
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Figure 4. (a) Z-score (full circles with errorbars) as a function ofNw , the number of paramet-
ers in the energy function ES of Eq. (3). These parameters are optimized by maximizing the
field c of maximal stability (full circles) for decoys obtained by gapless threading in a database
of 50 proteins. The value of Z � −8 can be used to discard ES as a suitable approximation of
the energy for protein folding. Errobars in the Z-score represent the standard deviation in the
set of analyzed proteins. (b) Assessment of the quality of the energy ED of Eq. (4). We show
the Z-score as a function of D, the separation between local and non-local contacts (see text).
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recover the pairwise contact approximation, since contacts between i and i+ 1 are
not considered here.

We tested the energy function ES in the case of decoys obtained by gapless
threading in a small database of 50 proteins. In order to optimize energy paramet-
ers, we maximized the field of maximal stability c by perceptron learning. We have
discussed in detail this approach for energy parameter optimization elsewhere [15].
For each Ns the energy parameters are normalized so that

Ns∑

k=1

∑

j>i

[
W(k)(si , sj )

]2 = 1 (5)

We report in Figure 4a the maximal stability field c as a function of the number of
parameters Nw in the energy ES . The tendency which emerges is that the quality of
the energy function, as measured by c, is increasing with the number Ns of steps.
However, we found Z � −8 for anyNs , signalling an energy function of poor qual-
ity. It is likely that the Z-score could be somewhat improved by optimizing energy
parameters by using the Z-score itself [3]. However, the maximization of the field
of maximal stability c guarantees that all the native states are those of minimal
energy and the practical equivalence with the Z-score method has been recently
discussed [16]. In this study we have verified that sets of parameters with less
optimized c did also have a less negative Z-score. Interestingly, upon increasing
the number of steps the more difficult proteins are better optimized. For example,
for the single step potential (Nw = 210), we found 3 proteins with Z > −4 while
for the 4 steps potential (Nw = 840) the worst value found was Z = −5.2. The
criterion that we suggested prescribes that one should find Z < −10 in conditions
slightly above the folding ones. We have assumed here that the decoys obtained
by gapless threading do correspond to these conditions. By doing so, we imply
that a protein can, hypothetically, explore the conformations obtained by threading
during its thermal motion at T slightly above Tf but that none of them is actually
the one of minimal energy.

We note that for a givenNs one has to specify the set {Rs} of threshold distances.
The data in Figure 4a correspond to one particular choice of such set, which is
different for each Ns . A more quantitative study would consist in finding

c̃ = max
{Rs }

c({Rs}) (6)

that is the maximal c over all the possible choices for the set {Rs} of threshold
distances.

For the energy function ED we optimized the energy parameters following the
same procedure described above. Figure 4b shows that there is an improvement of
about 10% with respect to the simple pairwise contact energy approximation when
the threshold is set at D = 5. This result is consistent with the expectation that
a better treatment of the energetics is attained when α helices and β hairpins are
considered. We compare the improvement obtained in this way with the one for ES
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and two steps, which also involves 420 energy parameters. In that case we obtained
an improvement of about 30%. As for ES , also for ED we found Z � −8 for all
the D studied. We therefore suggest that ED is not a suitable energy function for
protein folding studies.

4. Conclusions

By studying the properties of the noisy Go model, we have derived an efficient
criterion for assessing the quality of residue-specific functions for protein folding.
The motivation is that, at present, performing protein folding by using simple mod-
els, which are the only ones amenable to the simulation of the folding process [5,
6, 17–21], is prevented by the lack of a suitable approximation of the energy. The
widespread pairwise contact energy function has been shown to be unsuitable, even
when the energy parameters are optimized for a single protein [1]. The exploration
of new approximations of the energy requires convenient criteria to assess their
quality. This is a difficult problem, since in general the ground state of a given
energy function is very difficult to find [2]. Here we have presented a method
which does not require the knowledge of the ground state in advance, but only
of the approximate temperature of the coil-globule collapse.

We proposed that a potential is suitable for protein folding if Z < −10 in
the equilibrium ensemble for native or nearly-native conditions. This suggestion
is based on the finding that for the noisy Go model in the regime of small noise
(η < 1), one has Z � −10 for T slightly above Tf . The Go model represent an
artificial situation, in which the native state has no competitors. In the general case
one can expect to find challenging outliers, whose energy is also at 10 standard
deviation or more below the average energy at T � Tf . This is why Z(Tf ) = −10
is our proposed upper threshold for Z. This threshold value for Z is well known
from circumstantial evidence: Zhang and Skolnick [22] estimated Z < −15, from
calorimetric measurements on native proteins; Mirny and Shakhnovich [3] showed
that typically Z > −10 for various pairwise contact potentials for threading and
for lattice simulation tests, which is also in agreement with the result [1] that such
potentials are unsuitable for protein folding.

To illustrate the use of the Z-score criterion, we have shown that two augmented
forms of the pairwise energy approximation do not meet the criterion introduced
in this work. The database that we used in the gapless threading experiment is
arguably small. However, even for such an easy case it is not possible to obtain
Z < −10 for the two energy functions that we tested. Therefore it is unlikely than
by making the problem more challenging by including more decoys, for example
generated by the Monte Carlo procedure of Ref. [1], the performance of these
energy function would improve.

The possibility to assess the quality of a given approximation of the energy by
using rapid tests like the one presented here is the main motivation for introducing
the criterion discussed in this work. This criterion make it possible a preliminary
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screening of several forms of energy functions. Candidates that pass this test can
then be analyzed in detail by using other existing more rigorous methods, as for
example the perceptron technique [1] or the q-method [23].
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