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ABSTRACT  Expressions are derived for the response to di-
rectional selection for a quantitative trait that comes from fixation
of new mutations in a finite population. For additive genes with
a distribution of mutant gene effects symmetric about zero, the
response from fixing mutations occurring in a single generation
is 2Nioy,/ o, in which N is the effective population size, i is the
selection intensity, o is the phenotypic standard deviation, and
o3, is the increment in variance in the generation immediately
after occurrence of the mutations. This response is 2N times that
immediately after occurrence of the mutations. With continuous
mutation each generation, the asymptotic rate of response is also
2Nio},/ o and the asymptotic variance is independent of i. For
completely dominant mutations with symmetric effects, the rates
are Nioy;/a; and for recessive mutations the rates are propor-
tional to (Ni)"/2. If the distribution of mutant gene effects, a, is not
symmetric about zero, responses depend on the mean square of
effects of mutations with positive effect, rather than on the vari-
ance of their effects. Rates of change in fitness and of traits cor-
related with fitness are also analyzed. It is argued that new mu-
tations have contributed substantially to long-term responses in
many laboratory selection experiments.

Theory for predicting rates of response and limits to selection
of quantitative traits deals with the utilization of existing vari-
ation in the population rather than with the possible role of new
mutations that occur while selection is proceeding (1, 2). In
artificial selection programs the time scale is usually considered
too short for mutations to influence the rates or limits substan-
tially, but this view has been questioned (3). There have been
continued responses over periods of 50 or more generations in
some selection experiments (4—6); genes of visible phenotype
and large effect have been detected in several selection lines
but not in the base population (3) and, if recessive, have been
detected later than would be expected if initially segregating
(7); the “bobbed” phenotype, with reduced copy number at the
rRNA tandon, has been found in selected Drosophila popula-
tions (8); and long-term selection from highly inbred popula-
tions has, in some cases, led to responses in Drosophila bristle
number (9).

On an evolutionary time scale new variation from mutation
is obviously utilized by natural selection, but there is little the-
ory to indicate the rates of change possible and how they might
be related to observations. Most theoretical studies of evolu-
tionary rates have focused on gene or base substitution rates and
the role of neutral mutations (10) rather than on the consequent
changes in fitness or mean performance of other traits. The role
of mutations in maintaining quantitative variation with stabiliz-
ing, but not directional, selection has been analyzed, however
(11, 12).
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An attempt is made here to develop a theory for predicting
selection responses from directional selection due to fixing new
mutations in finite populations, which extends Robertson’s (2)
theory of selection limits from existing variation. The analysis
is in terms of simple point mutations, but other sources of new
variability are also covered by this analysis—e.g., insertion ele-
ments and duplication or deletion of a single copy of a gene; but
changes in number of multiple-repeat copies of a gene require
extensions of Ohta’s theories (13).

ANALYSIS

Let us assume that a population has constant size and breeding
structure, in which T individuals are scored each generation and
N is the effective population size. Mutations affecting some
quantitative trait under selection are assumed to be unlinked
and to show no epistasis for the trait.

Consider some locus currently fixed for allele A, which can
mutate to allele A’. The relative genotypic values for the trait
and consequent fitnesses, expressed in two equivalent ways, are
as follows:

Genotype AA AA’ A'A’
Genotypic value 0 ha a

1 1+ hs 1+s
Fitness

1 1 + hia/o 1+ ia/o.

The selective value is s = ia/a, in which i is the selection in-
tensity (standardized selection differential) and o is the phen-
otypic standard deviation of the trait under directional selection
(1). This linear relationship between s and @ depends on ia/o
not being too large, say less than 0.5. Heterozygote superiority
or inferiority (i.e. h > 1 or h < 0) is ignored.

The mutation rate per chromosome from A to A’ is u, and
the total number of mutants per chromosome set is A = 2 u,
in which L denotes summation over all possible mutants at all
loci. The frequency of A’ is g; its initial frequency, if it appears,
is 1/2T.

The mutation rates at any locus are assumed to be sufficiently
small that simultaneous segregation of more than two alleles at
a locus can be ignored. For selectively neutral genes, which
require 4N generations for fixation, this implies 4Nu < 1, but
advantageous genes are fixed more rapidly and larger mutation
rates can be incorporated.

The initial increase in variance in the population from one
mutation to A’ is 2a®h%q(1 — q) = a*h*/T, so the expected initial
increase in variance is 2T X a*h?/T = 2uh%e®. From all loci,
the increase in variance per generation (o) is expected to be
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oy = 22 wa’h?
L

00 1
=92\ f f a®h*fia,h)dh da = 2AE(@*h%), [1]
—x JQ

in which fla,h) is the joint density function of effect and dom-
inance of mutant genes—i.e., the relative frequency of mutants
of specified effect and degree of dominance—and is assumed
to remain constant over time. Many mutations may be neutral
with respect to the trait—e.g., third-base substitutions. The
density fla,h) may thus have a spike at a = 0; alternatively, such
mutations can be ignored, and A can be defined as the expected
number of those having any effect on the trait. As noted pre-
-viously (12, 14), % does not depend on the population size.
The expected response to selection in the generation immedi-
ately after the mutation is io’2,/ o because all variance is initially
additive. Subsequent responses depend on the effects and on
changes in gene frequency and the total selection advance from
these mutants on their probability of fixation.

The probability that a mutant gene with initial frequency 1/
2T is ultimately fixed in the population is, from Kimura's for-
mula (15),

172T
e—2Nsx(2h — 2hx + x)dx

u(s,h) = 25 . [2]
f e—2Nsx(2h — 2hx + x)dx
0

If this gene is fixed there is an increment in mean performance
of the metric trait of a units, so the expected advance from a
single mutant is au(s,h) = au(ia/ a,h), providing sufficient time
is allowed for its fixation. The total selection advance R, from

new mutations at all loci in any generation that are ultimately
fixed, is

R=2T Y paulia/a,h)
L

el
= 2TA J J’ aulia/o,h)fla,h)dh da . (3]
—=Jo

Assuming mutations appear at the same rate continuously, Eq.
3 is also the asymptotic rate of response per generation. Al-
though Egs. 2 and 3 can be integrated numerically for any set
of assumptions, insight into the formulas can be obtained only
by considering special cases. Most attention will be given to
additive genes.

Additive Genes (h = ). If all genes are additive Eq. 1 re-
duces to o = AE(a®) and Eq. 2 to

uls, o) = (1 = e™N)/(1 - e72%) (4]

(ref. 15). Thefixation probability in Eq. 4 can be approximated
as follows:

Ns>1 :u=Ns/T
[Ns| =1 :u=1/2T + Ns/2T (5]
Ns<-=1l:u=0.

The approximation for large N is given by Kimura (15) and re-
quires that Ns/T < lg; that for small Ns derives from Robert-
son’s (2) expression, u(q) = g + Nsq(1 — g). Eqs. 4 and 5 are
compared in Fig. 1 with Tu(s,1s) plotted against Ns, assuming
N to be very large; only for |Ns| near 1 is much error involved.
Also in Fig. 1 values of Tu(s,15) are shown computed for a
smaller value of N, using a Wright-Fisher haploid model (ref.
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Fic. 1. Curves a, relationship between fixation probability, ex-
pressed as Tu, and gene effect or selective value, expressed as Ns =
Nia/o for additive mutations computed by using the exact fonpula 4
and approximation 5 for large N values, and by matrix iteration for
N = 25, assuming an initial frequency of 1/2N. For large N and N,
Tu = Ns. Curves b, relationship between expected response, expregsed
as NsTu = NiaTu/o and gene effect, expressed as Ns = Nia/o, using
formulas 4 and 5 with 6. For large N and Ns, NsTu = (Ns).

16, p. 16) with 2N = 50. Egs. 4 and 5 based on a diffusion model
give a good fit until s values become large.

The expected selection advance, r = au(ia/a, 1) = auls,
L), for a gene with effect a, using the approximation of Eq. 5,
is as follows:

Nig/o > 1 : r = (Ni/To)d®
INia| <1 :r=Y%(Ni/To)a® + a/2T [6]
Niao< -1:r=0.

The relationship between the expected advance and the gene
effect is also shown in Fig. 1, in which (NTi/o)r is plotted
against Nia/o = Ns, with fixation probabilities computed by
using Egs. 4 and 5. The approximation is again seen to be gen-
erally satisfactory. Fig. 1 illustrates the quadratic relationship
between the gene effect and its contribution to selection ad-
vance because for mutant genes with a > 0 both the fixation
probability and the response, if fixed, are proportional to a.

Integrating over loci in Eq. 3 by using the approximations
of Eq. 5, and writing the density function for additive genes,
fla, %), as fla),

S a/Ni

R= (2NAi/o‘){ f a*fla)da + % f
o/Ni

—o/Ni

o)

o/Ni
+A f afle)da. (7]
—a/Ni
Several special cases lead to simpler results.
(i) Mutant effects distributed symmetrically about zero. If
E(a) = 0 and Var(a) = o2, from Eq. 1, 0% = %Ac? and Eq.



144 Genetics: Hill

7 simplifies to
R = NXig%/a = 2Nio%,/o. 8]

This value of R is 2N times the response in the first generation
after the mutations appear. Robertson (2) showed that the ratio
of the limit to the initial response was 2N for additive genes
already segregating in the population, providing they had small
values of Ns—i.e., |a| = a/Ni, approximately. Eq. 8, however,
applies for any value of Ns because, as shown by Eq. 5, for all
|a| = o/Ni, the coefficient of a in the fixation probability is Ni/
2T, and this is the average of the values, Ni/To and 0, for a
> o/Ni and a < —0/Ni, respectively.

Eq. 8 also shows that the additive genetic variance in the
population with continued mutation reaches 2No%,, because
the response equals (i/0) X the additive variance. This value
of 2N}, would also be that.achieved if no selection were prac-
ticed and a balance were reached between new variance deriv-
ing from mutation and that lost by drift (14). The somewhat sur-
prising result is that, for this model of a symmetric distribution
of effects of additive genes, the equilibrium variance in the pop-
ulation depends only on the effective population size and not
on the selection intensity. The model here is quite different
from that of Lande (12), who considers stabilizing selection in
a population of infinite size.

(ii) Divergent selection. In some experiments selection is
practiced in opposite directions in two lines. If these are main-
tained with the same size and selection intensity, the asymptotic
rate of divergence (D) between high and low lines is, from Eq.
7’

D = (2NAi/o) f a’fla)da = (4Ni/ Yoy [9]
for any distribution, fla), in which 0% is given by Eq. 1 with
h = 1. The rate of divergence reaches 2N times the initial rate,
regardless of the mean effect of mutant alleles.

(iii) Nio,/ o (i.e., Ns) large. In this case the terms involving
small selective values, s < |o/Ni|, can be ignored in Eq. 7,
which reduces. to

R = (2NAi/o) f a*fla)da = @NAi/)E* (a?)
0

= {4Nio}/oHE*(a)/02}, [10]

in which E*(a®) denotes the mean square of effects of mutants
having positive effect. For example, if effects are normally dis-
tributed with mean u,, E*(a®) = p(o? + pu2) — z0,u,, in which
p = Pr(a > 0) and z is the ordinate of the standardized normal
corresponding to p. For:

w/o, =-1.00 —0.75 —0.5 —0.25- 0.00 0.25
E*(@®/o2= 0.075 0.128 0.210 0.329  0.500° 0.733.

This shows how substantially the rate depends on the mean
effect of the mutants. Other distributions could be considered:
Kimura (17), for example, assumed that mutants were all un-
favorable for fitness with selective disadvantage (—s) having a
gamma distribution, such that fitness or a similarly distributed
metric trait would gradually decline; incorporation of some
mutants with selective advantage would require specification
of four parameters in all.

(iv) ic,/o large. Eq. 5 no longer holds adequately, as seen
in Fig. 1, if sN/T exceeds 0.5.or so. A better approximation to

the fixation probability is, by expansion of Eq. 4, u = (Ns/T)(1"

— L,Ns/T) and Eq. 10 can be extended to give
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R = (2NAi/ofE"* (a®) - W(Ni/To)E* (a%)}. [11]

Assuming, for example, normally distributed effects with zero
mean;

R = (NAi/o)o {1 — (2/m)*(Nig,/To}
= (2Nioy/oX1 — 0.8(Nio,/To)}.

IfN = T/5and i = 1.4, then 0.8Nig,/To = 0.220,/ o, requiring
mutant genes to have standard deviation of effect nearly as large
as the phenotypic standard deviation for the third moment cor-
rection in Eq. 11 to be important. For more leptokurtic sym-
metric distributions, for example with many mutants having
negligible effect, the correction is relatively larger.

Nonadditive Genes (h # Y). For small values of Ns, Eq. 2
reduces to

u(s,h) = 1/2T + (Ns/3T)(1 + h) [12]

(refs. 2, 18), the approximate bounds on N for validity of Eq.
12 depending on h. For large Ns the fixation probability de-
pends greatly on whether the mutant shows an effect in the
heterozygote:

h >0, Nsh > 2 (approx) : u(s,h) = 2Nsh/T
Nsh < —2 (approx) : u(s,h) =0 [13]
h =0, Ns > 1 (approx) : u(s,0) = (2Ns/m"2/T
Ns < —1 (approx) : u(s,0) =0 .

Complete dominance (h = 1). Summarizing parts of Eqs. 12
and 13:

Ns >3 : u(s,1) = 2Ns/T
=34 = Ns = % : u(s,1) = 1/2T + 2Ns/3T [14]
Ns < =34 :u(s,1) = 0.

Therefore, if Nio,/ o is sufficiently large that most variance due
to genes of positive effect is contributed by dominant genes
having Ns > 3/8, from Eq. 3,

R = (4NAi/0)E* (). [15]

For a symmetric distribution around zero of mutant effects,
from Eq. 1, 0% = 2A0? and from Eq: 15, R = 2NAioZ/o =
Nig}/o; this asymptotic rate is half that applying for additive
genes. If Nio,/o is small and gene effects are symmetrically
distributed, from Eq. 14, R = 24Nio%,/ 0. The limiting additive
genetic variance for complete dominance is therefore close to
No?, for any selection intensity.

Complete recessivity (h = 0). If Nio,/o is small and gene
effects are symmetrically distributed, from Eq. 12, R =
243NAic?/ 0. If Nio,/ o is large, from Eq, 13,

R = 2@Ni/wo)2AE* (a*?) . [16]

These responses cannot be related to the initial variance, be-
cause 0% = 0 in the absence of homozygotes. Although reces-
sive mutations have a very low fixation probability, when they
are fixed the response is very large relative to the variance and
response in the first few generations immediately after the
mutation. The limiting additive genetic variance is proportional
to (N/i)" (from Eq. 16).

The response from recessive mutants (unless Nio,/ o is small)
is proportional to (N/i)", rather than proportional to Ni for ad-
ditive or dominant genes. With the possibility of reverse mu-
tations the degree of dominance must vary from one mutant to
another; but the contribution of recessives can mostly be dis-
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counted because they are rarely fixed, so, assuming a range of
dominance deviations (k) around the additive value of h = 14,
the asymptotic response seems unlikely to differ far from the
values for additive genes of R = 2Nios,/ 0, if effects are sym-
metrically distributed or, more generally, R = {4Nig%/o}
{E*(@/ o3

DISCUSSION

Some data are available for evaluating the formulas derived.
Analyses of bristle number in Drosophila melanogaster have
shown that most genetic variation is additive (19) and that nat-
ural or induced mutants do not change the mean (14), so it seems
reasonable to assume a symmetric distribution around zero of
additive effects for such traits. Summarized from several anal-
yses, the amount of new mutational variance for abdominal and
stemogleural bristle number has been estimated as o =
107302, in which o2 is the environmental variance (12). In an
isogeneic line, the phenotypic variance (%) equals o2, and for
abdominal bristle number, oz = 2, approximately. Thus o
= 4 x 1072 and with 20% selection, typical of Drosophila ex-
periments, i = 1.4, giving an initial response of o3/0z =
0.0028 bristle per generation. The rate of response ultimately
achieved in- an isogeneic line with recurrent mutation is 2N
times as large for a symmetric distribution of effects (from Eq.
8)—i.e., about 0.06 bristle per generation for N = 10 and 0.6
for N = 100, or Y49 and Y4 standard deviations, respectively. Yoo
(6) observed an almost linear response of 0.3 bristle per gen-
eration from generations 50 to 80 of selection in a population
with o = 2, 20% selection, and 50 pairs of parents. Assuming
N = 70, the predicted rate is 0.4 bristle per generation from
mutations occurring after the experiment started.

Theory and observations on rates and patterns of response
to selection in laboratory experiments derived from isogeneic
lines or continued for many generations will be discussed in
more detail in another paper, but an important point needs to
be made here. Until mutations accumulate and reach frequen-
cies at which their additive variance is appreciable, the rates
of response in initially isogeneic lines, whether or not extra vari-
ation is induced by mutation, are expected to be small. De-
pending on the variance of gene effects, and:thus on the mag-
nitude of selective values, it may take 20 or so generations for
responses to become noticeable and many more for rates of re-
sponse due to mutations to approach values such as 2Nio%,/o
given here. Similarly, mutations are unlikely to contribute sig-
nificantly to response in early generations of selection from seg-
regating populations. Nevertheless, the magnitude of the fig-
ures calculated here suggests that, in populations maintained
in large size, new variants eventually contribute a substantial
response. The selection limits frequently observed in selection
experiments (1) may thus be due to opposing natural selection
or other influences, rather than to lack of useful variation unless,
of course, the number of useful mutations is so restricted that
all have appeared.

The formulas derived here can be extended in a straightfor-
ward way to natural rather than artificial selection, providing
interactions among loci in fitness can be ignored. Fitness itself
can be regarded as the quantitative trait, and in formulas for
responses both the effect a and the selective value ia/a are re-
placed by s. Thus rates of change in fitness are computed rather
than rates of gene substitution as by Kimura (17). For example,

Eq. 7 becomes
UN

Rg = 2N)‘{ f Sfs(s)ds + % j *fs(s)ds}
-UN -UN N
+ A sfs(s)ds,  [17]

-IN
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in which f(s) is the density function of fitness, and if the con-
tribution from the “effectively neutral” genes (10) with |[Ns| <
1 can be ignored, Eq. 10 becomes Ry = 2NAE; (s>). The dis-
tribution of effects of mutants on viability and the relationship
of effects to degree of dominance can be obtained from the study
of Mukai et al. (20). The distribution is clearly not symmetric
about zero, and a gamma distribution of deleterious effects (17)
may be more reasonable; if, however, the distribution were
symmetric, the initial rate would be \4\o?, corresponding to
Fisher’s fundamental theorem, and the asymptotic rate would
be 2N times as large. Similarly, the correlated changes in an-
other quantitative trait due to natural selection would be
NACov(s,a), in which Cov(s,a) is the covariance of effects and
fitness, and the change in a quantitative trait from a combination
of artificial and natural selection would be NA{icZ/a +
Cov(s,a)}.

A feature of the formulas, whatever the distribution of effects
or fitness, is the proportionality of response to population size,
simply because the number of mutations per generation is pro-
portional to population size and their fixation probability is al-
most independent of it unless the mutations are selectively neu-
tral. The formulas become less relevant as population size gets
very large, because more than two alleles per locus segregate,
the initial mutant frequencies are so low that the asymptotic rate
of response takes very long to achieve and the assumption of a
constant distribution of mutant effects becomes less reasonable
if much progress is made. Nevertheless, in situations in which
selection objectives remain constant, faster rates in breeding
programs and of evolution in nature are possible in larger pop-
ulations; that, as Kimura (17) remarked, this is “contrary to ac-
tual observations” on evolution indicates the changing or non-
directional mode of selective forces in nature.

Further theoretical analysis will be required to remove many
of the simplifying assumptions, notably of no linkage, epistasis,
or multicopy genes.
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