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Abstract. An important issue in theoretical epidemiology is the epidemic threshold phenomenon,
which specify the conditions for an epidemic to grow or die out. In standard (mean-field-like)
compartmental models the concept of the basic reproductive number, R0, has been systematically
employed as a predictor for epidemic spread and as an analytical tool to study the threshold con-
ditions. Despite the importance of this quantity, there are no general formulation of R0 when one
considers the spread of a disease in a generic finite population, involving, for instance, arbitrary
topology of inter-individual interactions and heterogeneous mixing of susceptible and immune indi-
viduals. The goal of this work is to study this concept in a generalized stochastic system described in
terms of global and local variables. In particular, the dependence of R0 on the space of parameters that
define the model is investigated; it is found that near of the ‘classical’ epidemic threshold transition
the uncertainty about the strength of the epidemic process still is significantly large. The forecasting
attributes of R0 for a discrete finite system is discussed and generalized; in particular, it is shown
that, for a discrete finite system, the pretentious predictive power of R0 is significantly reduced.
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1. Introduction

It is nowadays recognized that the phenomenon of health-disease in human com-
munities only may be understood by considering complex and dynamic inter-
relations among several factors operating simultaneously in multiple spatiotem-
poral and organizational scales. In fact, the healthy and sick individual suffers
uninterruptedly the effects of the microbiological evolution, the antropogenic en-
vironmental and ecosystem stress and many others misdeeds resulting from so-
cioeconomic inequalities. Therefore, it is not surprising to find out the proliferation
of a myriad of methodological tools employed during the development of the
epidemiological research.
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Among this methodological mosaic the mathematical and computer (or simula-
tion) modeling of communicable and infectious disease comes as a hypothetical-
deductive approach whose scope consists primarily in understanding and manip-
ulating, a priori and to predictive purposes, the underlying mechanisms behind
the origin and diffusion of epidemic events. As a matter of fact, the attempt of
understanding in what conditions pathogenic agents (once invaded a host popu-
lation) could establish themselves as an infection (the transmission of pathogens
from one host to another) resulted in the development of one of the most important
and thoroughly discussed concepts in infectious disease modeling as early as in the
beginning of the last century, namely the epidemic threshold. Thus, in writings of
R. Ross (1909) [1] the so-called mosquito theorem was the first recognition of a
quantitative threshold deducing that it was not necessary to eliminate mosquitoes
totally in order to eradicate malaria. Two decades later would testify the publication
of the classic Kermack-McKendrick’s (1927) [2] paper that definitely consolidated
the threshold concept in epidemiologic literature. In this deterministic SIR model
(S stands for susceptibles, I for infected, and R for removed) an epidemic process
is considered to evolve only when the density of susceptible individuals is greater
than a threshold value Sc. Bartlett (1957) [3], based in a large amount of collected
data of disease incidence in industrialized countries introduced thirty years later an-
other expression linking microbial invasion and threshold parameters: the critical
community size, that could explain the fade-out patterns of measles epidemics.

However, the inherent individual heterogeneity and probabilistic local nature
of interindividual relationships has been traditionally neglected in state-variable
models like this; in fact, in this population level approach all behavioral and in-
dividual variability are diluted into the intercompartmental rates and densities or
number of mean individuals – as S, I or R compartments – described in terms of
partial or ordinary differential equations. Nevertheless, it was subsequently pos-
sible to express the epidemic threshold in a way perhaps much more intuitive when
the focus changed to consider the infected host or the parasite itself, instead of
looking at the density or number of susceptible. In this perspective the threshold
condition that determines whether an infectious disease will spread in a susceptible
population has been described through the so-called basic reproduction number
or also denominated as basic reproductive rate, commonly denoted by R0 [4].
For microparasites such as viruses or bacteria it may be biologically understood
as the average number of secondary cases produced or caused by one infected
individual during its entire infectious period in a completely susceptible popula-
tion. Thus, the intrinsically individual based perspective of this threshold concept
should not be underestimated since the reproduction number can link the inside-
host evolutionary or pathogenic dynamic (microscale) and transmission process at
population level (macroscale). From a purely deterministic point of view it appears
intuitively evident that if R0 ≥ 1 the pathogen can undoubtedly establish itself
in a host population and, at least, an endemic regime will settle down. But this is
a short-sighted prediction since, specially to directly transmitted disease in finite
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populations, the mechanisms that ensure the maintenance of the parasite within a
community depends critically on the way as the individuals interact one another,
sometimes unforeseeable.

In this work we analyze limitations of the predictive power of the R0 parameter
(as classically formulated) for the spread of a disease: Alternatively to population
level approach and state-variable models, stochastic inter-individual interactions
are also used and its implications on the predictive attributes of the basic re-
production number R0 are studied through a simplified model: a lattice based
model including infectious period in that individual interactions are straightfor-
wardly described in terms of global ( � ) and local (�) variables, which in turn can
be tuned out to simulate respectively the populational mobility and geographical
neighborhood contacts.

The remainder of this paper is organized as follows. In the next section it is
presented a general formalism to the evolution of a population invaded by an
infection. The formalism is then applied in section 3, where concepts involving
R0 and the threshold phenomenon are discussed in order to define an invasion
criterion for the infection and evaluation of R0. The results are discussed in section
4. Although this work will be mainly concerned on R0 as a function of the model’s
parameters, the formalism presented in what follows can be applied to study a
variety of epidemic scenarios.

2. The Model System

Consider a discrete dynamical system (discrete space and discrete time) where a
population of N individuals is distributed on the sites of a toroidal lattice M =
{mij } – with i and j varying from 1 to L (N = L × L). Each individual site mij is
assigned to receive three personal specific attributes: (1) a spatial address or lattice
position (i, j); (2) a set of three possible status, namely, s, i and r, specifying a
clinic disease stage of each particular individual, which represent, respectively, the
conditions of susceptible (subject to be infected by a contagious agent), infectious
(effectively transmitter of contagious agents) and removed (recovered or immune);
and finely (3) an infectious period τ , specifying how many units of time an infected
individual can propagate the contagious agent. Note that

∑
s + ∑

i + ∑
r = N ,

with N constant.
Such a system is suitable mainly for describing a single epidemic in a closed

system (no birth or migration). The choice of such reduced model, however, is not
far-fetched because, as already mentioned above, the main interest here involves
only very short period of time, so that the dynamics of host births, migration, etc.,
are largely irrelevant. [5]. The dynamic evolution of the population is described,
step-by-step, by a set of a priori stated interaction rules, and assumes that each
new configurational state of the system (described here by the geographical ad-
dress (i, j) of each individual and by the instantaneous number of susceptibles
S(t), infectives I (t), and removed individuals R(t)) depends only on its previous
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state. Hence, for the present purpose the spread of the disease in the population is
considered as being governed by the following rules:
1. Any susceptible individual may become infected with a probability pS . An in-

fected susceptible becomes infective after an average latency time τl (assumed
here as τl = 0, without lost of generality).

2. Infectives are removed deterministically from the system (becoming immune)
after an infectious period τ , that for simplicity is considered as constant for all
infected individuals.

3. Once in the removed class the individual participate only passively in the
spreading of the infection (eventual topological blocking) by a period of im-
munity greater than the complete epidemic process.

During one time step, the three preceding rules are applied synchronously to all
sites in the lattice; the present model, therefore, can be viewed as a simple two-
dimensional cellular automaton. Actually, it is an adaptation of automata network
to standard SIR models for studying the spread of infectious diseases.

In this work, the probability pS , which is intended to be probability per unit
of time, is taken as the superposition of the local and global influences, in order
to unify the individual-based (contacts among nearest neighbors) and the standard
mean-field (homogeneously interacting population) approaches. Therefore, one as-
sumes that disease transmission occurs with a total infection probability pS written
as

pS = �pG + �pL, (1)

where the pre-factors � and � are weight parameters tuning the short (cluster
formation) and long-range (mean-field type) interactions; it is also required that
� + � = 1 in order to satisfy the probabilistic requirement 0 � pS � 1.

The global influence pG amounts to the probability of a susceptible to become
infective due to the ubiquity of I (t) infected individuals (mean-field). So one can
expect that in the limit of large N (N → ∞), in each time step, any susceptible
may become infected with probability

pG = ρ

N

∑
{k,l}

δi,σ (k,l) (2)

where 0 ≤ ρ ≤ 1 is one of the model parameters: it limits the maximum value
of pG and is related to the intrinsic mobility of the population; the sum sweeps
all lattice sites {k, l}, and δi,σ (k,l) is the Kronecker delta function which assumes
the value ‘one’ when the state σ of the site (k, l) corresponds to the infectious
state i, and ‘zero’ otherwise (σ (k, l) can be s, i or r). Actually, the sum in the
Equation 2 just counts the instantaneous number of infectious individuals I (t) in
the population.

On the other hand, the local term pL = pL(i, j) is the probability of a suscept-
ible individual (located at the site (i, j)) contracting infection due to n infectives
first and second neighbors ( 0 ≤ n ≤ 8 is a integer number corresponding to all



THE PREDICTIVE POWER OF R0 IN AN EPIDEMIC PROBABILISTIC SYSTEM 67

possible combinations of (i+ξ, j+ξ), with ξ = 0, 1,−1). Therefore, let λ ∈ [0, 1]
be the probability of a particular susceptible when just one of its neighbors is
infective. Hence, (1 − λ)n will be the probability for not contracting the disease
when exposed to n infectives. Therefore, the chance of he (or she) contracting the
disease in a unit of time is[6]

pL = 1 − (1 − λ)n . (3)

Thus, when λ = 1 the infection spreads deterministically, with 8 nearest neighbors
to any infective being infected (the choice for equipotent first and second neigh-
bors was adopted because the use of only the four nearest neighbors is unduly
restricting).

The expression for pG is a convenient and simple way for describing the popu-
lational mobility. It is based on the mass action law, borrowed from the chemistry,
and gets new meaning here under the perspective of pairwise spatially disordered
interactions through the population elements. In this sense, it is a result of the
small-word effect, and so became a particular version of the small-word lattice of
Watts and Strogatz [7]

This simple approach allows to study in great detail the dynamical behavior of
the model in the full space of control parameters λ and ρ, and the local and global
balance pre-factors � and �. Therefore, the system is governed by pS (Eq.1) and
τ , and its temporal evolution is determined by updating the lattice synchronously
at each time step through the application of the three rules above.

3. R0 and The Threshold Phenomenon

The probability pL as in the Eq.(3) [8], [6], and in a number of alternative forms[9],
has been employed in the analogy between percolation and epidemic. Since that the
critical value pc, in which random clusters grow to infinite size, is know (analytic
or numerically) for any lattices, pc may be used as a powerful general criterion
for ‘epidemic spread’[10], [9]. However, due to the traditional importance of the
concept of R0 in the epidemic scenario, this threshold is generalized for finite dis-
crete systems, as described above, in order to show its relevance for an intrinsically
individual based perspective of the problem.

The overall structure of the model presented here shows the interplay of two
types of transmission mechanisms by assuming that each infectious individual
interacts strongly (physically) with their few susceptible neighbors, and uniformly
and weakly with each particular susceptible in the population of susceptibles. Thus,
the local mode of transmission pL incorporates the individual-based component
from the perspective of the susceptible individuals, the actual (physical) contacts
that each susceptible experiences, and the global probability pG, due to intrinsic
populational mobility, which may be viewed as resulting of a mean-field (discrete)
approach, in the sense that the disease transmission to each susceptible individual
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also depends on the instantaneous total number of infectious individuals in the
population.

To better appreciate the consequences of this formulation, it is firstly run si-
mulations for the extreme values of the tuning pre-factors through the procedure
described above. These cases allow to recover the two modes of transmission in
its pure form corresponding to the (i) homogeneous mixing approximation (mean
field), when � = 1, and to the (ii) percolation process (the transmission occurs by
localized individual contact), when � = 1. Furthermore, it is considered the dam-
age 	I on a susceptible population due to just one infected individual (I (0) = 1)
landing in a totally susceptible population (S(0) = N − 1 and R(0) = 0) during
the infectious period τ ; to calculate 	I it is considered only the number of new
infected individuals in the population after τ time steps, ignoring infections from
the victims of these first infected individual (operationally, it is enough to consider
the latency τl > τ , that is, a latent period of infection greater then the infectious
period). The Figures 1a and 1b show, respectively, the simulation results for 	I

as function of ρ for � = 1, and the behavior of 	I as a function of the contact
probability λ for � = 1 (that is, � = 0); the system size considered in most of
the simulations presented here was L = 100 (population size N = L × L = 104),

although some extra different sizes L/2 and 2L) were also used in order to verify
finite size effects. � = 1 and � = 1 are the two limiting cases usually taken as ref-
erences in studying the effect on the system when both mechanisms are superposed;
the amount 	I is obtained after τ = 10 time steps (covering exactly the infectious
period) and was estimated as an average over 31 independent simulations (what is
equivalent to verify the establishment of infection on 31 distinct populations with
the same pattern of contacts among the individuals).

The linear pattern observed for 	I vs ρ means that the present stochastic ap-
proach reproduces qualitatively the classical basic reproductive number R0 if one
identifies 	I as the average number of secondary cases that an infectious indi-
vidual causes. Indeed, the linear relation 	I = [ ρ

N
S(0)] τ fits pretty well the data

shown in Figure 1a, and so one may consider that infectives make contacts at a
mean rate [ ρ

N
S(0)] throughout an infectious period of length τ (note that for large

enough populations ρ

N
S(0) → ρ). On the other hand, when � = 1, the amount

	I represents R0 for the case where individuals interact only with their spatial
nearest neighbors, and so its values saturates at 	I = 8 for λ � 0.3. For each
particular run, significant fluctuations on 	I are observed (mainly for smaller N)

but averaging over 31 runs is enough to smooth considerably the curves, as shown
in Figure 1.

Before to proceed through the application of the present formulation, some
comments regarding the definition of the R0 are in order. The basic reproduc-
tion number has been widely used as a predictor parameter conceived to indicate
the epidemic potential of a pathogen once it has introduced in a totally suscept-
ible population. In fact, to deterministic and continuous (in space and in time)
population-system models the future fate of an infectious agent has been expressed
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Figure 1. Average damage 	I due to just one infectious individual on the susceptible popu-
lation S = N − 1, for two extreme cases. [a] – Gamma = 1: the amount 	I changes linearly
with the intrinsic mobility ρ, as can be expect from Equation (2). [b] – Lambda = 1: the
amount 	I increases rapidly with the infection probability λ due to local (physical) contact,
and saturates at 	I = 8 for λ � 0.3, as one can infer from Equation (3).

through the threshold condition. Accordingly, when R0 > 1, infections can invade
a totally susceptible population and persist; if R0 < 1, the disease then dies out
and can not establish itself. To the special condition R0 = 1, there is an endemic
regime in that the unique initial infectious case reproduces subsequently just one
infectious secondary case and son on.

This assumption in modelling of the establishment of an infection (which is
possibly wrong) [11] will be partially preserved here to have the classical treatment
as a reference but, indeed, to capture more realistic or probable practical situations
is of interesse that the ‘first analytical look’ at a population be considered when
the epidemic process is already in course. For instance, at the initial time t0 one
may consider the arbitrary situation in that I (t = t0) >> 1 at the same time that
the number of removed individuals is also large, and then ask the question: What
is the value for the reproduction number in this case? To answer this question
one may generalize the concept of R0 as the normalized average number R(t0; τ)

of secondary cases (reproductive ratio) about the time t0, due to I (t0) infectious
present in the population at t = t0, through the following expression

R(t0; τ) =
∑t0+τ

t0

〈∑
{k,l}s (�pG + �pL)

〉
n

I (t0)
, (4)

where the brackets means an average on a set of n independent runs in the time
interval [t0, t0+τ ], and the sum over {k, l} sweeps all sites occupied by individuals
in the status s (susceptibles). Note that all the instantaneous extensive and intensive
conditions of the population, at any arbitrary time t0, are all taken into account,
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Figure 2. The epidemic probability as a function of average reproduction number R0. The
tuning pre-factor are fixed at � = � = 0.5, and the parameter ρ and λ are choosing from
the interval [0, 0.2]. For R0 � 1 epidemics are observed in about 60% of the events (in a
population of size N = 104).

as for example, the sites in the removed status randomly scattered through the
population (acting as epidemic shield protectors), and the set remaining infectious
time τ(k, l; t0) for each individual in the status i located at the site (k, l). These
conditions certainly affect the epidemic process and the progression of the epi-
demic process depends in some how on the reproduction number’s value, (that is,
if R(t0; τ) > 1 or < 1). But, as already mentioned above, the initial condition
I (t = t0) = 1 will be deliberately used in the present work in order to maintain the
original intention of comparing the traditional deterministic definition of the basic
reproductive ratio R0 with the present stochastic approach.

In order to infer how the intrinsic stochastic nature of the epidemic process
affects the predictive attributes of R0, the concept of epidemic probability PE is
introduced. Numerically it is estimated directly from the simulation experiments
based on the algorithm of the previous section. Indeed, it is just given by the ratio
PE = ne/n, where ne is the number of runs in that at least one susceptibles
was infected during the infectious period, and n is the total number of runs or
experimental populations. The probability PE may be expressed as function of the
mean reproduction number R0, which also is determined from the same simulation
experiments by using the Equation 4 above. In the Figure 2 it is shown the resulting
PE as a function of R0 with � = � = 0.5 and ρ and λ varying in the interval
(0 − 0.2]. The large number of scattered points in the graph, mainly at larger
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Figure 3. Reproduction number R0 as function of the model parameters (ρ, λ) obtained by
averaging over 100 independent realizations. Each strip, identified by a different gray tone,
corresponds to a range of value for R0 according to: white, 0 ≤ R0 < 1; light gray,
1 ≤ R0 < 2; and so on. At the limit of very large populations (N → ∞) the slope α

(dotted lines), which roughly delimitates each region, can be obtained using Equation (5) –
see text; giving α = �

8�
. Therefore, in [a] � = � = 0.5, so α = −0.125; and in [b] � = 0.9

and � = 0.1, giving α = −1.125, whose values are closely reproduced by the results.

R0, is an intrinsic aspect of this graph due to the fact that in the parameter space
(ρ, λ) there are different combinations of ρ and λ resulting in approximately the
same values for R0, as it is illustrated in Figure 3. Therefore only the stochastic
component of such scattering of points may be reduced by increasing the number
of runs used in the averaging procedure.

The amount PE tends to saturates at PE � 1 when the value of R0 is sufficient
large (R0 � 3), so that the epidemic spread in the population almost always is
observed. Furthermore, the results showed in the Figure 2 means that only for large
enough R0 (actually R0 > 3) one can be sure about an epidemic development in
the population, while that, even for R0 < 1 there is still a possibility to have an
epidemic spread. Therefore, from the epidemic control perspective, reducing the
effective reproductive number to a level below one, upon vaccination, for instance,
could be a potential problem of strategy since that for R0 � 1 in about 60% of
events this strategy will fail, that is, an epidemic process should be established
with chance of 60% for R0

∼= 1, under the conditions of the present model. More
pointedly, despite the claim of the threshold criterium, it is improbable to recognize
(using only standard census data) the imminence of any epidemic disaster if the
system is near to the threshold region.[12] The more accurate (although frustrating)
criterium is to realize that, irrespective the value of R0 that the level of vaccination
forces, there is always a chance (even thought small) of the disease re-invading the
population.
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Figure 4. [a] The epidemic probability PE vs R0 for two systems: N = 4−1 × 104 (open
circles) and N = 4 × 104 (dark circles) smaller fluctuations for the larger system is the most
significative difference. [b] – The relative error decreases as R0 increases; for R0 � 1 the
absolute error is of the same magnitude of R0 as a consequence of the averaging on ‘zeros’
and ‘ones’, mainly.

The same system size N = 104 was employed in order to get all the results
discussed above. However, in order to verify eventual effect of the system size on
the results, two extra systems were considered, namely a smaller N = 4−1 × 104

and a bigger N = 4 × 104 system, but no significant difference was found. Clearly
fluctuations are smaller for larger systems mainly because the chance of nucleation
of closer cluster due to the global term �pG decreases with the system size N,

reducing then the chance of the magnification effect of the local term �pL on
eventual clusters located nearly enough each other. The Figure 4a shows for PE

vs R0 (in the interval 0 < R0 ≤ 2) for two different system sizes; note that the
size effect is pronounced only on the second moment (dispersion of the data) of the
distribution of PE for each R0. More precisely, the Figure 4b shows the normalized
standard deviation (relative error) σR0 as function of R0 for the larger 4 × 104

system. A decreasing 1/R0− like behavior for the relative error is a consequence
of the averaging of integer quantities, that is: R0 = (0×n0+1×n1+2×n2+3×n3+
· · ·)/η; where η = n0 + n1 + n3+ · · ·, and nk is the number of experiments in
which exactly k susceptibles were infected.

Finally, the numerical equivalence between R′
0 estimated by an analytical ap-

proximation and R0 calculated by simulation is verified. For this purpose R′
0 is

considered in the limit of large populations (N → ∞) by taking the mean number
of susceptible infected by just one infective during its infectious period τ , through
the following direct expression

R′
0 =

{
�

[ ρ

N
S(0)

]
+ �[λ 8]

}
τ. (5)
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Figure 5. Numerical equivalence between R′
0 estimated by an analytical approximation and

R0 calculated by simulation.

The Figure 5 shows the parametric graph of R′
0 vs R0 where they are calculated,

respectively, by Equation (5) above and by simulation using the proposed probab-
ilistic approach represented in Equation (4), with I (t0 = 0) = 1. Strong correlation
between the two ways for estimating the basic reproduction number is kept only
for values of ρ and λ not too large (R0 � 2) because during the time τ, the local
term that composes R0 (Eq.4) may change from zero up to eight, while this limit
is not present in the Equation (5). However, that is enough in order to validate
the conclusions about the predictive attributes of PE = PE(R0) because R′

0 and
R0 are numerically equivalent: the result given by Equation 5, although intuitive,
follows from a stochastic representation of the classical SIR model [13].

4. Final Comments

In this paper a stochastic version of the original SIR model (involving only single
epidemics) was introduced with the main purpose of to characterize and re-interpret
the conditions for the establishment of an epidemic in a population through the
concept of basic reproduction number (R0). A peculiar characteristic of the present
approach is the assumption that the probability of a susceptible individual become
infective is a superposition of the local and global influences. Using as initial
configuration just one single infected individual in a fully susceptible population,
condition frequently used to define R0, it was demonstrated that the discrete char-
acter of a finite population reduces the pretentious predictability of the threshold
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criteria, and so it is, indeed, an incomplete predictive tool since that, irrespective
to the value of R0, an epidemic has a finite probability to establish itself, due the
inherent stochastic nature of any finite epidemic system.

Indeed, more consistent derivation of R0 has been tried, even though using the
same classical deterministic approach, due to the too widely estimate obtained to
R0, which in recent applications for the smallpox have varied from R0 = 1.5 to 20
[14]. Rather than just a caricature of the original formulation of R0, the approach
presented in this paper may be viewed as a simpler and generic alternative for
investigating the spread of diseases in a population, which may greatly facilitate
the analysis of a number of distinct epidemic scenarios. Particularly, a system with
increasing topological complexity can be easily tackled. For example, one may
consider the practical situation in that, at an arbitrary initial time t0, the population
has already many infectious individuals (that is, I (t0) >> 1), and also many im-
munes scattered through the population (working as epidemic shield) and then try
to answer the question: What is the value for the reproduction number in this case?

Finally, as a major challenge that this ‘microscopic’ approach can handle, one
may think on the possibility of incorporating in the traditional definition of R0 the
underlying evolutionary dynamics of the pathogenic agent. This view is in contrast
with the standard epidemiological models, which tend to use a constant absolute
parasite fitness R0. However, more detailed considerations on the investigation of
this avenue of research is left for a future contribution.
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