1 Supplementary methods

2 Denaturing Gradient Gel Electrophoresis (DGGE)

3	Chromosomal DNA of the soil samples was extracted using the PowerSoil DNA Isolation Kit									
4	(MoBio) following the protocol of the manufacturer. For DGGE, ~370 bp-long fragments									
5	were amplified using primers 31F and 341R (5'-CTGCTGCCTCCCGTAGG-3', with a GC									
6	clamp added at its 5' end (1), and analyzed as previously reported (2). DGGE band patterns									
7	were compared using the program package GelCompar II (Applied Maths NV, Sint-Martens-									
8	Latem, Belgium). For subsequent sequencing, DNA bands were excised and eluted in 25 μ l									
9	of 10 mM Tris-HCl buffer (pH 8.0) for 1 hour at 37°C, reamplified using the corresponding									
10	primers without GC clamp and sequenced. Some DGGE bands contained multiple 16S rRNA									
11	gene sequences which were first separated by cloning (see above), then 8 randomly selected									
12	clones with different inserts were sequenced.									
13 14 15 16 17 18	 Reference List Muyzer G, Dewaal EC, Uitterlinden AG. 1993. Profiling of Complex Microbial- Populations by Denaturing Gradient Gel-Electrophoresis Analysis of Polymerase Chain Reaction-Amplified Genes-Coding for 16S Ribosomal-Rna. Appl. Environ. Microbiol. 									
19 20 21 22 23 24	 59:695-700. Zul D, Denzel S, Kotz A, Overmann J. 2007. Effects of plant biomass, plant diversity, and water content on bacterial communities in soil lysimeters: Implications for the determinants of bacterial diversity. Appl. Environ. Microbiol. 73:6916-6929. 									

Supplementary Table 1. General information on the three regions and mean (± standard
 deviation) of soil and site parameters for all grassland and forest plots in each region. Naming
 corresponds to all grassland plots of Schwäbische Alb (AEG), Hainich (HEG), Schorfheide Chorin (SEG) or all forest plots of Schwäbische Alb (AEW), Hainich (HEW) and

5 Schorfheide-Chorin (SEW).

	A	lb	Hair	nich	Schorfheide		
Latituda	48° 20' 6	0.0''-	50° 56' 1	14.5" –	52° 47' 24.8'' –		
Latitude	48° 32' 3	.7" N	51° 22' 4	43.4" N	53° 13' 26.0'' N		
Longitude	9° 12' 13	.0" – 9°	10° 10' 2	24.0" –	13° 23' 27'' – 14°		
Longitude	34' 48.9'	'Е	10° 46' 4	45.0" E	8' 52.7'' E	Ξ	
Altitude [m above sea level]	460 - 860)	300 - 400	0	10 -140		
Mean annual temperature [°C]	6.5 - 8.0		6.0 - 7.5		8.0 - 8.4		
Mean annual precipitation [mm]	940 - 960)	750 - 80	0	520 - 600		
	Leptosol,		Stagnoso	ol,	Histosol,		
Soil type (predominantly)	Cambisol	l	Luvisol		Cambisol		
	AEG	AEW	HEG	HEW	SEG	SEW	
- II	6.49	4.96	7.01	5.15	6.85	3.56	
рн	(±0.48)	(± 0.74)	(±0.18)	(±1.12)	(±0.58)	(±0.13)	
	67	60	50.3	53	150	25	
$Corg [g kg^{-1}]$	(+15)	(+18)	(+22)	(+15)	(+71)	(± 6)	
	(±13)	(±10)	(122)	(±13)	(±/1)	(±0)	
ът. г1а	6.30	4.87	4.73	3.76	14.02	1.42	
Nitrogen [g kg ⁺]	(± 1.40)	(± 1.11)	(±1.83)	(±1.27)	(±5.39)	(±0.32)	
	. ,	`````	. ,	, ,	. ,	. ,	
Phoenhorus [mg kg ⁻¹]	1158	687	1113	553	1046	252	
r nosphorus [nig kg]	(±391)	(±229)	(±395)	(±201)	(±427)	(±93)	
Corg/Nitrogen-ratio	10.59	14.12	10.36	14.35	10.48	17.72	
	(±0.67)	(± 1.30)	(± 1.01)	(± 1.29)	(±0.95)	(±1.47)	
	52	47	45	44	44	30	
Soil moisture [% vol]	(+3)	(+4)	+5)	 (+4)	++++++++++++++++++++++++++++++++++++++	(+3)	
	(±3)	()	(±3)	()	(±17)	(±3)	
	6.87	4.53	9.51	6.16	14.05	7.15	
Soil temperature [°C]	(± 0.82)	(± 0.45)	(± 2.99)	(± 1.54)	(± 0.64)	(± 0.76)	
	(_0.0_)	(=01.0)	(,)	(=110 1)	(_0101)	(_01/0)	
Soil respiration	3.86	1.44	5.53	1.65	12.11	1.93	
$[\mu mol CO_2 m^{-2} s^{-1}]$	(±0.95)	(±0.15)	(± 2.98)	(±0.32)	(± 3.12)	(±0.61)	
	23	5 53	47	0.91	10	0 59	
Amoebae $[10^4 \text{ g}^{-1}]$	(+22)	(+5.07)	- / (+57)	(+0.50)	(+15)	(+0.41)	
	((± 3.07)	(± 37)	(± 0.50)	(± 13)	(±0.+1)	

Suppl. Table 1 continued

Flagellates [10 ⁴ g ⁻¹]	2.22 (±2.16)	5.51 (±2.54)	3.34 (±1.46)	1.43 (±0.78)	2.16 (± 2.33)	1.62 (±0.50)
Ciliates $[10^2 \text{ g}^{-1}]$	1.97 (±3.01)	0.23 (±0.29)	0.54 (±0.75)	0.40 (±0.41)	5.12 (± 0.78)	0.44 (±1.68)
N° of vascular plant species	32 (±13)	34 (±18.89)	20 (±9)	32 (±15)	16 (± 3)	14 (±10)
Land use intensity	2.64 (±1.96)	40 (±17)	3.67 (±1.58)	42 (±20)	2.70 (± 2.16)	42 (±17)
Ammonium [µmol kg ⁻¹]	7.92 (±6.22)	65 (±39)	8.88 (±3.91)	33 (±21)	9.44 (±7.38)	154 (±131)
Nitrate [µmol kg ⁻¹]	637 (±549)	421 (±271)	595 (±241)	558 (±344)	807 (±374)	276 (±206)

- 1 Supplementary Table 2. GenBank accession numbers of the 2031 acidobacterial 16S rRNA
- 2 gene sequences of pooled samples of all grassland plots of Schwäbische Alb (AEG), Hainich
- 3 (HEG), Schorfheide-Chorin (SEG) or all forest plots of Schwäbische Alb (AEW), Hainich
- 4 (HEW) and Schorfheide-Chorin (SEW) and sequenced DGGE bands.

	accession numbers
AEG	HQ597043 - HQ597396
UEC	HQ597397 - HQ597542
HEU	HQ597544 - HQ597731
	HQ597733 - HQ597739
	HO597741
	HO597743 - HO597754
	HO597756 - HO597759
	HO597761 - HO597762
	$H_{0597764} - H_{0597768}$
	H0597771 - H0597774
	H0597776 - H0597786
	HO507788 - HO507803
	$H_{0}597796 - H_{0}597817$
	HO507810 - HO507823
	HQ597817 - HQ597825 HQ597825 HQ597826
	HQ597823 - HQ597820
	$HQ_{397029} - HQ_{397033}$
	HQ59/85/ - HQ59/840
	HQ597848 - HQ597850
	HQ597852 - HQ597859
	HQ59/864 - HQ59/868
	HQ59/8/0 - HQ59/8/1
	HQ597873 - HQ597874
	HQ597876 - HQ597880
	HQ597882
	HQ597884 - HQ597886
	HQ597888 - HQ597889
SEG	HQ597893 - HQ597900
5EO	HQ597902 - HQ597904
	HQ597906 - HQ597917
	HQ597920 - HQ597923
	HQ597925 - HQ597926
	HQ597930
	HQ597932
	HQ597934 - HQ597936
	HQ597939 - HQ597942
	HQ597944 - HQ597950
	HQ597952 - HQ597964
	HQ597967
	HQ597969
	HQ597972
	HO597974
	HO597977
	HO597979 - HO597980
	HO597982
	HO597984
	HO597986
	HO597988
	HO597990 - HO597991
	HO597993
	HO597996 - HO597997
	HO729774 - HO729915
AFW	HO598095 - HO598414
HFW	HO598415 - HO598744
1112 W	HO598745 - HO59871
SEW	HO508873 - HO500002
DCCE	U0507008 U0509004
DUUE	11QJ7/770 - NQJ70074

Supplementary Table 3. Number of clones (OTUs), coverage and diversity indices of clone
 libraries at the 3% dissimilarity level. Pooled samples of all grassland plots of Schwäbische
 Alb (AEG), Hainich (HEG), Schorfheide-Chorin (SEG) or all forest plots of Schwäbische
 Alb (AEW), Hainich (HEW) and Schorfheide-Chorin (SEW) have been used to generate

5 clone libraries.

	AEG	HEG	SEG	AEW	HEW	SEW	all
Clanas	355	334	345	320	330	347	2021 (414)
Clones	(126)	(121)	(192)	(124)	(142)	(75)	2031 (414)
Gp1	6 (4)	4 (3)	16 (10)	83 (34)	106 (34)	295(48)	510 (66)
Gp3	13 (7)	8 (5)	49 (35)	36 (17)	24 (14)	35 (16)	165 (66)
Gp4	27 (13)	66 (27)	31 (20)	18 (8)	19 (12)	-	161 (49)
Gp5	60 (8)	35 (7)	10 (6)	43 (7)	41 (10)	-	189 (16)
Gp6	217 (82)	208 (70)	204 (99)	132 (51)	126 (60)	5 (5)	892 (172)
Gp9	-	-	2 (1)	-	-	-	2 (1)
Gp11	3 (2)	3 (2)	12 (6)	1 (1)	1 (1)	-	20 (8)
Gp13	-	-	-	1 (1)	5 (4)	8 (3)	14 (6)
Gp15	-	-	1 (1)	-	2 (2)	3 (2)	6 (4)
Gp17	25 (9)	9 (6)	20 (14)	6 (5)	6 (5)	1 (1)	67 (25)
Gp18	4 (1)	1 (1)	-	-	-	-	5 (1)
Coverage (%)	90.1	88.0	67.2	87.2	85.2	94.2	
Shannon	4.3	4.3	4.85	4.2	4.4	3.6	
Faith's PD 1	2.95	2.85	4.78	3.07	3.48	1.86	
MPD ²	0.119	0.123	0.122	0.128	0.129	0.086	
MNTD ³	0.030	0.029	0.033	0.032	0.031	0.028	
NRI ⁴	2.53	2.74	4.50	1.59	1.91	5.66	
NTI ⁴	3.78	4.99	2.84	3.36	3.91	3.98	
Simpson ⁵	0.98	0.98	0.99	0.98	0.98	0.96	
рD ⁶	0.059	0.061	0.061	0.064	0.064	0.043	

6 ¹Faith's index of phylogenetic diversity

7 ² Mean pairwise distance between all species in a community

8 ³ Mean nearest taxon distance – mean distance separating each species in the community

9 from its closest relative

⁴ Net Relatedness Index/Nearest Taxon Index – measures of phylogenetic community
 structure

⁵ Simpson's diversity – probability that two individuals from the community belong to
 different OTUs

⁶ Phylogenetic Diversity – expected phylogenetic distance between to randomly selcted

15 individuals from the community

Supplementary Table 4. Number of clones of OTUs with more than 20 sequences. *Acidobacteria* subgroup and dominant *in silico* T-RF of the
 respective OTU is given. Pooled samples of all grassland plots of Schwäbische Alb (AEG), Hainich (HEG), Schorfheide-Chorin (SEG) or all

4	forest plots of Schwäbische A	Alb (AEW),	Hainich (HEW)	and Schorfheide-Chor	orin (SEW) have be	een used to generate clone lib	oraries.
---	-------------------------------	------------	---------------	----------------------	--------------------	--------------------------------	----------

	OTU3 Gp5	OTU7 Gp1	OTU3 1 Gp5	OTU114 Gp1	OTU9 Gp6	OTU115 Gp6	OTU6 Gp6	OTU94 Gp1	OTU32 Gp1	OTU119 Gp1	OTU92 Gp6	OTU2 Gp1	OTU15 Gp5	OTU45 Gp6	OTU99 Gp6
<i>in silico</i> T- RF (bp)	135	88	135	258/260	194	193	167, 194	88	258	258	194	143	137	285	210
AEG	23 (6.5%)		15 (4.2%)		9 (2.5%)	9 (2.5%)	16 (4.5%)				7 (2.0%)		7 (2.0%)	4 (1.1%)	7 (2.0%)
HEG	9 (2.7%)		19 (5.7%)			16 (4.8%)	5 (1.5%)				7 (2.1%)			8 (2.4%)	2 (0.6%)
SEG	1 (0.3%)	6 (1.7%)	4 (1.2%)			9 (2.6%)	1 (0.3%)				7 (2.0%)	2 (0.6%)		7 (2.0%)	10 (2.9%)
AEW	23 (7.2%)	13 (4.1%)	6 (1.9%)	1 (0.3%)	16 (4.1%)	1 (0.3)	6 (1.9%)	2 (0.6%)	3 (0.9%)	1 (0.3%)	3 (0.9%)	6 (1.9%)	9 (2.8%)	3 (0.9%)	1 (0.35)
HEW	16 (4.8%)	19 (5.8%)	6 (1.8%)		12 (3.6%)	1 (0.3%)	4 (1.2%)	4 (1.2%)	5 (1.5%)	7 (2.1%)	2 (0.6%)	4 (1.2%)	7 (2.1%)		2 (0.6%)
SEW		24 (6.9%)		41 (11.8%)	1 (0.3%)			25 (7.2%)	19 (5.5%)	18 (5.2%)		11 (3.2%)			
Total	72 (3.5%)	62 (3.1%)	50 (2.5%)	42 (2.1%)	38 (1.9%)	36 (1.8%)	32 (1.6%)	31 (1.5%)	27 (1.3%)	26 (1.3%)	26 (1.3%)	23 (1.1%)	23 (1.1%)	22 (1.1%)	22 (1.1%)

Supplementary Table 5. Collinearity among soil and site parameters as determined by Spearman's rank correlation coefficient rho. Significantly correlated parameters show Spearman's rank correlation coefficient rho > 0.6 and > -0.6 in bold. Abbreviations: pH – pH, Corg – organic carbon, N – nitrogen, CN – Corg/Nitrogen-ratio, SM – soil moisture, ST – soil temperature, SR – soil respiration, Am – abundance of Amoebae, Fl – abundance of Flagellates, Ci – abundance of Ciliates, VP- number of vascular plant species, LUI – land use intensity, G –

6 grassland, F – forest, NH4 - ammonium, NO3 - nitrate, P – phosphorus.

		pН	Corg	Ν	CN	SM	ST	SR	Am	Fl	Ci	VP	G	LUI F	NH4	NO3	Р
pН		1															
Corg		0.556	1														
Ν		0.686	0.957	1													
CN		-0.840	-0.467	-0.667	1												
SM		0.266	0.371	0.453	-0.447	1											
ST		0.497	0.239	0.367	-0.449	-0.109	1										
SR		0.669	0.481	0.631	-0.670	0.158	0.801	1									
Am		0.539	0.438	0.577	-0.661	0.517	0.176	0.475	1								
Fl		0.088	0.206	0.166	-0.084	0.252	-0.229	-0.097	0.479	1							
Ci		0.373	0.492	0.560	-0.397	0.198	0.417	0.550	0.260	-0.172	1						
VP		-0.051	0.029	-0.034	0.142	0.179	-0.351	-0.215	0.005	0.145	-0.143	1					
TTT	G	-0.087	0.035	0.088	-0.359	0.013	-0.015	0.109	0.510	0.259	-0.058	-0.316	1				
LUI	F	0.176	0.064	0.112	-0.081	-0.073	0.061	0.020	-0.112	0.026	0.109	-0.196	I				
NH4		-0.765	-0.387	-0.552	0.745	-0.389	-0.377	-0.565	-0.397	0.026	-0.507	0.060	-0.024	-0.139	1		
NO3		0.342	0.499	0.557	-0.420	0.296	0.182	0.307	0.352	0.115	0.181	-0.168	0.281	0.231	-0.272	1	
Р		0.760	0.597	0.718	-0.807	0.291	0.310	0.562	0.650	0.282	0.303	-0.040	0.424	-0.203	-0.623	0.339	1

- 1 **Supplementary Table 6.** Results of *in silico* T-RF analysis (T-RF-cut-tool in ARB) of clone
- 2 sequence data. T-RFs in bold dominated in the respective subgroup. Assignments to *in vivo* T-

Acidobacteria subgroup	in silico T-RFs	<i>in vivo</i> abundant T- RFs
1	88 , 143, 144, 258 , 260	85, 256
3	135, 141 , 143 , 145, 258	142
4	88, 138 , 139, 276	139
5	135 , 137	133
6	166, 167, 191, 193, 194 , 195, 210, 285 , 287	189, 191, 283, 286
11	462, 464	461
13	90, 166	87, 163
15	74	71
17	133 , 135, 137, 191, 193	130
18	200, 276	202, 275

3 RFs were calculated from *in silico* T-RFs \pm 3 bp.

Supplementary Figure 1: PCA-Scatterplot of Bray-Curtis similarity measures of 16S rRNA
 gene T-RFLP and DGGE patterns for the 57 sites. ■ AEW, □ AEG, ▲ HEW, △ HEG, ◆ SEW,
 ◊ SEG. Naming corresponds to all grassland plots of Schwäbische Alb (AEG), Hainich
 (HEG), Schorfheide-Chorin (SEG) or all forest plots of Schwäbische Alb (AEW), Hainich
 (HEW) and Schorfheide-Chorin (SEW).

6

7 Supplementary Figure 2. RDA of 16S rRNA gene DGGE patterns of forest soils and 15 8 environmental variables. N=30, RDA1=11%, RDA2=10%, 59% of total variation in the data 9 can be explained by environmental variables. The longer the arrow and the smaller the angle 10 to a significant axis, the more likely this variable influences the overall community 11 composition. Abbreviations: pH - pH, Corg - organic carbon, N - nitrogen, CN - Corg/N-12 ratio, SM - soil moisture, ST - soil temperature, SR - soil respiration, Am - abundance of 13 Amoebae, Fl – abundance of Flagellates, Ci – abundance of Ciliates, VP - number of vascular 14 plant species, LUI - land use intensity, G - grassland, F - forest, NH4 - ammonium, NO3 -15 nitrate, P – phosphorus. RDA for grassland soils was not statistically significant.

