Hfq influences multiple transport systems and virulence in the plant pathogen *Agrobacterium tumefaciens*

Ina Wilms¹#, Philip Möller¹#, Anna-Maria Stock¹, Rosemarie Gurski¹, Erh-Min Lai² and Franz Narberhaus¹*

¹Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, 44780 Bochum, Germany

²Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan

* Corresponding author: Franz Narberhaus, Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, Universitätsstrasse 150, NDEF 06/783, 44780 Bochum, Germany. Tel: +49 (0)234 322 3100; Fax: +49 (0)234 321 4620; E-mail: franz.narberhaus@rub.de

I.W. and P.M. contributed equally to this study.

This file contains:

Supplementary Table S1: Strains and plasmids used in this study

Supplementary Table S2: Oligonucleotides used in this study

Figure S1: Purification of the Hfq protein

Figure S2: Verification of the chromosomal *hfq* deletion

Figure S3: Altered tumour formation of Δhfq on plants

Table S1: Strains and plasmids used in this study.

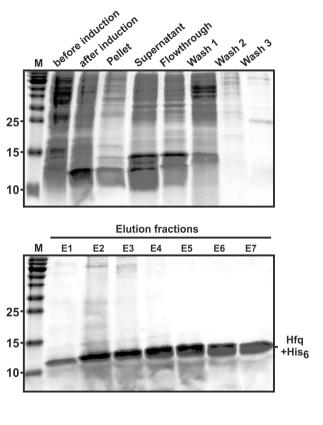
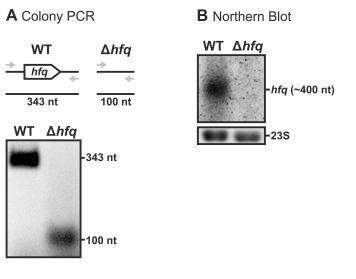
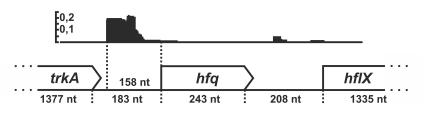

SA
anada
SA
J

Table S2: Oligonucleotides used in this study.

T7 promoter sequences for generation of *in vitro* transcripts are written in bold letters. Restriction sites are underlined.

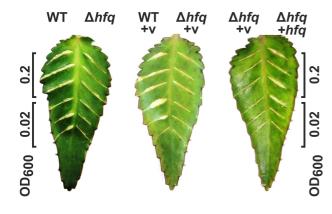
Oligonucleotide	Purpose	Sequence (5' to 3')
 Δ <i>hfq</i> _up_fw	Δhfq mutant generation, up fragment	AAAA <u>GAATTC</u> GAAGCGCTTGAAACATCGCC
Δ <i>hfq</i> _up_rv	Δhfq mutant generation, up fragment	AAAA <u>CTGCAG</u> GGCGCCGCTTCTTTCTTTATT
	(Δhfq upstream fragment from 1445724 to 1446123 of	on the circular chromosome)
Δ <i>hfq</i> _down_fw	Δhfq mutant generation, down fragment	AAAA <u>CTGCAG</u> TCAGGCTCCTTTAACGGTATC
Δ <i>hfq</i> _down_rv	Δhfq mutant generation, down fragment	AAAA <u>GCATGC</u> AACAGGGTTGCGGGACGCG
	(Δhfq downstream fragment from 1446367 to 144676	66 on the circular chromosome)
Δ <i>hfq</i> _check_fw	Δhfq mutant generation, colony PCR	ATTGATTATTTCCGGTATCCC
Δ <i>hfq</i> _check_rv	Δhfq mutant generation, colony PCR	TGTTCCGATTCAGGTCAGTC
RNAprobe_rpsE_fw	Northern analysis; RNA-probe for rpsE	CCGTGAAGAGCGCGATAGCG
RNAprobe_rpsE_rv	Northern analysis; RNA-probe for rpsE	GAAATTAATACGACTCACTATAGGGCAGCAGAACCTTGCCTGCG
RNAprobe_4678_fw	Northern analysis; RNA-probe for atu4678	CGTCGATGTCGGCGTTGCGTCG
RNAprobe_4678_rv	Northern analysis; RNA-probe for atu4678	GAAATTAATACGACTCACTATAGGG CGTCGATCTGACCCTGGCTAAG
RNAprobe_0420_fw	Northern analysis; RNA-probe for atu0420	GCTTCGCGTCCGATCAAGAGC
RNAprobe_0420_rv	Northern analysis; RNA-probe for atu0420	GAAATTAATACGACTCACTATAGGGCGAAGACTTCGCGTGTGCCGT
RNAprobe_ <i>malE</i> _fw	Northern analysis; RNA-probe for malE	CGGTTCCACCGCCCTTGG
RNAprobe_ <i>malE</i> _rv	Northern analysis; RNA-probe for malE	GAAATTAATACGACTCACTATAGGGCGCGAACTGCTTCAGCGTGC
RNAprobe_dppA_fw	Northern analysis; RNA-probe for dppA	CGCCGGAAGGCTTCGATCC
RNAprobe_dppA_rv	Northern analysis; RNA-probe for dppA	GAAATTAATACGACTCACTATAGGGCCACGGGTTCTTGGTATCACCC
RNAprobe_4259_fw	Northern analysis; RNA-probe for atu4259	CCCAATGACAGCTTGACGGTCG
RNAprobe_4259_rv	Northern analysis; RNA-probe for atu4259	GAAATTAATACGACTCACTATAGGGCCATGGAAAGGGCCTGGC
RNAprobe_4431_fw	Northern analysis; RNA-probe for atu4431	CCTGAAGACCGGTTATGCCGG
RNAprobe_4431_rv	Northern analysis; RNA-probe for atu4431	GAAATTAATACGACTCACTATAGGGGTTCTCGTTCTTCTGGTTGAGGC
RNAprobe_2422_fw	Northern analysis; RNA-probe for atu2422	CGGCGTGAAATTCGTTGTC
RNAprobe_2422_rv	Northern analysis; RNA-probe for atu2422	GAAATTAATACGACTCACTATAGGGTCACGCCGGCAGCATTG
DNAprobe_C2A_fw	Northern analysis; DNA-probe for AbcR1	AAAACCTCCAGAGGGGAACAGC
DNAprobe_C2A_rv	Northern analysis; DNA-probe for AbcR1	CCCATATTTTAGTTAGCTGTCAC
runoff_C2A_fw	plasmid generation for AbcR1 runoff transcription	GAAATTAATACGACTCACTATAGGGAGTTGATGCACACGGTGGC
runoff_C2A_rv	plasmid generation for AbcR1 runoff transcription	GATATCAAAAAAAGAGGGCCGCCGG
runoff_ <i>atu24</i> 22_fw	plasmid generation for atu2422 runoff transcription	GAAATTAATACGACTCACTATAGGGTCGAACAGGTCCTTGCAAT
runoff_ <i>atu</i> 2 <i>4</i> 22_rv	plasmid generation for atu2422 runoff transcription	AAAA <u>GATATC</u> AACGCGACCATGGCGGTC
CHis_Hfq_fw	Hfq overexpression plasmid generation	AAAA <u>CATATG</u> GCGGAACGTTCTCAAAAC
CHis_Hfq_rv	Hfq overexpression plasmid generation	AAAA <u>GTCGAC</u> GGCAGCGCCTTCTTCGCTC
pBBSyn <i>_hfq</i> _fw	hfq complementation plasmid generation	AAAA <u>TCTAGA</u> ATGGCGGAACGTTCTCAAAAC
pBBSyn_ <i>hfq</i> _rv	hfq complementation plasmid generation	AAAA <u>GAGCTC</u> TCAGGCAGCGCCTTCTTCG


Figure S1


purification of C-terminal His₆-tagged Hfq. The fractions loaded are indicated above. The lower gel shows the elution fractions. The positions of marker proteins (M) are given on the left in kDa.

Purification of the A. tumefaciens Hfq protein. SDS-PAGE (16%) after Ni-NTA

Figure S2


C Transcriptional start site of *hfq* and genetic organization

Verification of the chromosomal *hfq* **deletion.** (**A**) Colony PCR with wild-type (WT) and $\triangle hfq$ cells. The 2% agarose gel loaded with PCR samples was stained with ethidiumbromide. Diagrams explaining the PCR product lengths are given above. Primers ($\triangle hfq$ _check_fw/rv) are indicated as grey arrows. (**B**) Northern blot analysis verifying the absence of hfq (~400 nt) in the mutant. Hybridizations were performed with 8 µg of total RNA from *A. tumefaciens* wild-type (WT) and the $\triangle hfq$ mutant. Primers used for RNA-probe generation are listed in table S3. Ethidiumbromide-stained 23S RNAs were used as loading controls. (**C**) Transcriptional start site of hfq revealed by dRNA-seq and genetic organisation with flanking genes trkA and hflX. The detected band in (B) corresponds to a monocistronic transcript comprised of the 5'-UTR and hfq coding region.

Figure S3

for evaluation.

various *A. tumefaciens* strains. Cultures of the wild-type (WT), Δhfq , the complemented mutant $(\Delta hfq+hfq)$ and control strains harboring the vector (v) (WT+v and $\Delta hfq+v$) were diluted to the indicated optical densities and applied on freshly wounded leaves of *Kalanchoe diagremontiana*. Tumour formation was monitored after incubation at room temperature for 4-5 weeks and leaves were cut off

Altered tumour formation of \Delta hfq on plants. Leaves of a *Kalanchoe* plant were inoculated with

- 1. **Giacomini A, Ollero FJ, Squartini A, Nuti MP.** 1994. Construction of multipurpose gene cartridges based on a novel synthetic promoter for high-level gene expression in Gram-negative bacteria. Gene **144:**17-24.
- 2. **Hanahan D.** 1983. Studies on transformation of *Escherichia coli* with plasmids. J. Mol. Biol. **166:**557-80.
- 3. **Narasimhulu SB, Deng XB, Sarria R, Gelvin SB.** 1996. Early transcription of *Agrobacterium* T-DNA genes in tobacco and maize. Plant Cell **8:**873-86.
- 4. **Norrander J, Kempe T, Messing J.** 1983. Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene **26:**101-6.
- 5. **Schäfer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Puhler A.** 1994. Small mobilizable multi-purpose cloning vectors derived from the *Escherichia coli* plasmids pK18 and pK19: selection of defined deletions in the chromosome of *Corynebacterium glutamicum*. Gene **145:**69-73.
- 6. **Wilms I, Voss B, Hess WR, Leichert LI, Narberhaus F.** 2011. Small RNA-mediated control of the *Agrobacterium tumefaciens* GABA binding protein. Mol. Microbiol. **80:**492-506.