Supplementary Material

Function and regulation of isoforms of carbon monoxide dehydrogenase/acetyl-CoA synthase in *Methanosarcina acetivorans*

Nicole Matschiavelli, Ellen Oelgeschläger, Berardino Cocchiararo, Johannes Finke, and Michael Rother

Supplementary Table S1: Primers used in this study.

Primer	Sequence ^a	Restriction site(s) introduced
5-up1016	CCGAAG <u>CTCGAGGGCGCGCC</u> GCAAATTAACTA CAGGGAATTTTTCTATAG	Xhol, Ascl
3-up1016	GAACCC <u>AAGCTT</u> GAAATTACACACTTACAAACAA AATTAAGTAC	HindIII
5-do1011	CG <u>GGATCC</u> CTCAATTTTCGACTACAGCAAAAAT C	BamHI
3-do1011	G <u>ACTAGTGGCGCGCC</u> GCTGTTTTAAGTTCTCCA TCAAACTTTC	Spel, Ascl
5-up3860	CCGAAG <u>CTCGAGGGGCGCGCC</u> CGAAGTTCTTAT GTTTGGAAACTTTTTC	Xhol, Ascl
3-up3860	GAACCC <u>AAGCTT</u> CGCCTTAAAGTTACAACCGTTT AAATG	HindIII
5-do3865	CG <u>GGATCC</u> CGCAGGTAATTCTTTAAGGATTCAC	BamHI
3-do3865	G <u>ACTAGTGGCGCGCC</u> CAGCAGAATGAACACGG AAACAG	Spel, Ascl
5-up4399	CCGAAG <u>CTCGAGGGCGCGCC</u> GCCTTAGACCTG AGTTCAAGTC	Xhol, Ascl
3-up4399	GAACCC <u>AAGCTT</u> ACGCAGTTGAAGGTAAAAATC	HindIII
5-do4399	CG <u>GGATCC</u> GGTTCAATGCTCGGTTCAATGC	BamHI
3-do4399	G <u>ACTAGTGGCGCGCC</u> CTGGATAAACCAGGATAT GACTTC	Spel, Ascl
ocdhA- SB/forw	GTAGGGGCAGCAAAGGAG	
ocdhA- SB/rev	CGTGGTCAAGGCTGCCG	

a: 5' \rightarrow 3'; restriction site(s) introduced are underlined.

	Growth substrate ^a							
Strain	Methanol		CO		Acetate			
	t _d	final OD ₅₇₈	t _d	final OD ₅₇₈	t _d	final OD ₅₇₈		
WWM1	9.2 ± 0.8	1.2 ± 0.1	26.6 ± 2.6	0.6 ± 0.04	46.8 ± 1.7	0.7 ± 0.02		
MCD1	8.8 ± 0.6	1.2 ± 0.3	29.3 ± 2.1	0.6 ± 0.03	48.4 ± 2.1	0.7 ± 0.01		
MCD2	9.8 ± 0.8	1.2 ± 0.1	35.5 ± 3.4	0.6 ± 0.1	46.6 ± 4.3	0.7 ± 0.03		
MCD3	8.9 ± 1.2	1.1 ± 0.1	23.5 ± 1.5	0.9 ± 0.01	44.4 ± 4.5	0.7 ± 0.01		
MCD31	10.4 ± 0.4	1.3 ± 0.2	23.6 ± 2.2	0.7 ± 0.02	47.8 ± 3.6	0.5 ± 0.02		
MCD32	10.2 ± 0.6	1.3 ± 0.2	25.5 ± 1.3	0.7 ± 0.02	48.0 ± 3.0	0.7 ± 0.02		
MCD21	23.2 ± 0.4	1.2 ± 0.1	n.d. ^b	n.d. ^b	n.d. ^b	n.d. ^b		
MCD213	23.1 ± 0.3	1.1 ± 0.02	n.d. ^b	n.d. ^b	n.d. ^b	n.d. ^b		

Supplementary Table S2: Substrate-dependent growth parameters of *cdh*-mutants.

a: *M. acetivorans* was cultivated on methanol (125 mM), CO (150 kPa) or acetate (120 mM); doubling time (t_d) in h and final optical density were determined photometrically at 578 nm (OD₅₇₈). Shown are average values from at least three independent cultures, \pm indicates standard deviation; the experiments were qualitatively reproduced at least once.

b: n.d.: not detectable as strains cannot grow on the respective substrate.

Supplementary Figure S1: Substrate-dependent growth of *M. acetivorans cdh* null mutants. Growth of the *cdh* wild type WWM1 (squares), of the $\triangle cdh1 \triangle cdh2$ double mutant MCD21 (circles) and of the $\triangle cdh1 \triangle cdh2 \triangle cdhA3$ triple mutant MCD213 (triangles) in the presence of 125 mM methanol and 40 mM acetate was monitored by measuring the optical density at 578 nm (OD₅₇₈). Shown are average values and standard deviations of three independent cultures for each strain; the experiment was qualitatively reproduced at least twice.

Supplementary Figure S2: Comparison of local gene synteny in methanogenic archaea. The genomic environment of *cdhA3* (*ma4399*, light green) from *M. acetivorans* (top) was compared to the respective genomic regions in *M. mazei* (second from top) and *M. barkeri* (third from top) using the *Display Conserved Neighborhood* function of the Integrated Microbial Genomes database at the DOE Joint Genome Institute (http://img.jgi.doe.gov); as the latter two do not encode stand-alone *cdhA* subunits *ma4401* was used as the query, which also allowed to include *Methanococcoides burtonii* (third from bottom), *Methanohalophilus mahii* (second from bottom) and *Methanosaeta thermophila* (bottom) in the comparison; orthologous genes are colored identically; numbers depict position in the respective genome sequence.