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Thiourea-catalysed ring opening of episulfonium ions with indole derivatives by means of 

stabilising, non-covalent interactions 

Song Lin1 and Eric N. Jacobsen1* 

 

Small organic and metal-containing molecules (MW < 1000) can catalyse synthetically useful 

reactions with the high levels of stereo-selectivity typically associated with macromolecular enzymatic 

catalysts. Whereas enzymes are generally understood to accelerate reactions and impart selectivity by 

stabilising specific transition structures through networks of cooperative interactions, 

enantioselectivity with chiral, small molecule catalysts is typically rationalised by the steric 

destabilisation of all but one dominant pathway. However, it is increasingly apparent that stabilising 

effects play an important role in small-molecule catalysis as well, although the mechanistic 

characterisation of such systems is rare.  Here it is shown that arylpyrrolidino amido thiourea 

catalysts catalyse the enantioselective nucleophilic ring opening of episulfonium ions by indoles.  

Evidence is provided for selective transition state stabilisation of the major pathway by the thiourea 

catalyst in the rate- and selectivity-determining step.  Enantioselectivity is achieved through a 

network of attractive anion binding, cation-, and hydrogen bonding interactions between the catalyst 

and the reacting components in the transition structure assembly. 

Multi-functional urea and thiourea derivatives have been shown to promote enantioselective 

reactions of cationic species in non-polar media by binding the corresponding counteranion through 

hydrogen bonding,1,2,3,4 with selectivity imparted through a combination of electrostatic association 

and additional noncovalent interactions that differentiate the diastereomeric transition structures 

leading to the product enantiomers.5,6,7 We sought to extend the anion-binding catalysis concept to 

episulfonium ions, highly reactive electrophilic species that readily undergo diastereospecific 

bond-forming reactions with nucleophiles.8,9,10,11 Recently, Toste and coworkers demonstrated 
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enantioselective catalysis of the addition of alcohols to episulfonium ions using a chiral phosphoric 

acid catalyst.12 On the basis of our previous work in anion-binding catalysis, we envisioned that a 

(thio)urea could serve as a suitable host for an in situ formed episulfonium ion through interactions 

with the counteranion (Figure 1). High enantioselectivity might be achieved if additional interactions 

between the catalyst and episulfonium intermediate could be incorporated to differentially stabilise the 

diastereomeric pathways. This hypothesis was investigated in the context of a Friedel–Crafts-type 

indole alkylation reaction.13    

Figure 1. Proposed thiourea-catalysed episulfonium ion ring opening with indole via anion binding. 

 [Insert Figure 1] 

 

Results and Discussion 

A. Reaction Methodology Development 

Preliminary efforts to identify a suitable episulfonium ion precursor revealed that a relatively 

non-nucleophilic leaving group was required in order to achieve the desired reactivity.  Ultimately, 

we found that stable trichloroacetimidates (TCA) of type 1a12 were particularly useful substrates (eq. 

1), undergoing protonolysis and substitution with a variety of strong Brønsted acids to form a 

meso–episulfonium ion with a counteranion that is readily varied based on the identity of the acid 

employed.  

A wide variety of chiral urea and thiourea derivatives was evaluated in the model reaction (Table 1).  

Only arylpyrrolidine-derived thioureas of type 3 were found to induce reactivity above the background 

rate of 1a and acid alone. A broad screen of Brønsted acids revealed a pronounced counterion effect. 

In conjunction with thiourea 3b, mineral acids with a nucleophilic counter-anion, such as HCl, 

produced only trace amount of the desired indole addition product 2a (entry 1), with the corresponding 

chloride addition product predominating.  In contrast, sulfonic acid co-catalysts afforded 2a in useful 

yields and varying levels of enantioselectivity, with 4-nitrobenzenesulfonic acid (4-NBSA) providing 

the most promising result (entry 5). The identity of the aromatic substituent on the pyrrolidino amide 
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portion of the catalyst was also found to exert a profound effect on reaction enantioselectivity (entries 

5, 7-12).  Catalyst 3a, lacking an aryl group, induced little rate acceleration above the background 

reaction (entry 6) and afforded nearly racemic product.  In contrast, catalyst 3c-3g bearing more 

extended aromatic substituents proved more enantioselective than catalyst 3b.  Correlation between 

ee and either the electronic properties of the aryl substituents or the polarisability of the aromatic ring 

has been noted in other reactions using this family of catalysts.2,6,14  However, in the present case no 

such straightforward relationship was observed.  Instead, ee was observed to improve upon 

expanding the aryl group from phenyl to phenanthryl (entries 7-10), and then to descrease slightly 

with more expansive aryl substituents (entries 11-12). Urea catalyst 4e induced only marginally lower 

ee than its thiourea counterpart (entries 10 vs 13), indicating that any mechanism wherein the thiourea 

sulfur is engaged productively as a Lewis base catalyst is not operative.15,16,17,18  

Table 1. Reaction optimisation.a 

[Insert Table 1] 

A variety of substrate combinations was evaluated in order to define the scope as well as gain 

insight into the mechanism of the reaction (Table 2). Substrates bearing electronically and sterically 

diverse sulfur substituents (R2) underwent enantioselective reactions (entries 1-9), with 

S-benzyl-substituted derivatives affording highest ee’s (entries 1 & 7).  Electron potential maps 

calculated using DFT showed that the benzylic protons in the S-benzyl episulfonium ions bear a 

substantial amount of partial positive charge, and this may serve to enhance attractive interactions 

between the cationic intermediate and an electronegative functionality on the catalyst (vide infra). 

Various indole derivatives bearing electron-donating and -withdrawing substituents at the 2-, 4-, 5- or 

6-positions all underwent the addition reaction with high levels of enantioselectivity (entries 10-16). In 

sharp contrast, N-methyl indole provided the desired product 2p with moderate yield and in almost 

racemic form (entry 17). This suggested that the indole N-H motif may be involved in a key 

interaction during the ee-determining transition state (vide infra). Benzotriazole also underwent the 

addition reaction, forming a C-N bond with synthetically useful ee (entry 18). Less nucleophilic 

heterocycles (i.e., -nucleophiles with Mayr nucleophilicity parameters N < 4)19 proved unreactive. 
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Variation of the substituents on the carbon backbone of the electrophile revealed that aryl groups with 

meta- and ortho- functionalities were compatible (entries 19-22); substrates bearing a para-substituent, 

regardless of its steric and electronic properties, resulted in substantially lower enantioselectivity 

(entries 23-26). Ongoing computational studies suggested that in the transition state leading to the 

major enantiomeric product, one of the para-C–H bonds is engaged in an attractive, electrostatic 

interaction with the thiourea-bound sulfonate. We reasoned that the lack of this interaction in the cases 

with para-substituted substrates might result in a less well-organized transition structure and reduced 

selectivity.  Finally, three different acetimidate leaving groups displayed essentially the same 

reactivity and enantioselectivity, suggesting that the leaving group is not directly involved in the 

ee-determining step (entries 28-30). 

Table 2. Substrate scope of nucleophilic ring opening of episulfonium ions with indole derivatives.a 

 

[Insert Table 2] 

B. Determination of the Rate- and Enantio- Determining Step 

Thiourea derivatives of type 3 bearing specific arylpyrrolidino residues have been identified as 

highly enantioselective catalysts for nucleophilic additions to a remarkable variety of cationic 

electrophilic intermediates, including oxocarbenium ions,2 acyliminium ions,6 acylpyridinium ions,20 

and now episulfonium ions.  Elucidation of the mechanisms that underlie catalytic activity and 

stereoinduction by these thioureas may potentially serve as a foundation for new reaction discovery 

and provide broader insights into cooperative non-covalent pathways. We therefore undertook a 

detailed experimental and computational investigation of the indole addition to episulfonium ions 

promoted by 3e and related catalysts. On the basis of the qualitative observations described above and 

previous studies involving thiourea anion-binding pathways, a simple catalytic cycle for the reaction 

of indoles with 1 mediated by 3e can be advanced (Figure 2).  The absence of dependence of 

enantioselectivity on the identity of the acetimidate group suggests that the reaction begins with 

protonation of the trichloroacetimidate substrate, followed by episulfonium ion formation in a step that 

may or may not be under the influence of the thiourea catalyst. A series of 1H NMR studies of 
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pre-formed episulfonium ion derivatives17 revealed that the episulfonium sulfonate most likely exists 

as a covalent adduct both in the presence or absence of the thiourea catalyst, so an endothermic 

ionization to the episulfonium ion complex is presumably taking place before addition of the indole 

nucleophile.  Finally re-aromatisation to form the product and regenerate the acid closes the catalytic 

cycle.  In the thiourea-promoted pathway, the chiral catalyst must therefore induce enantioselectivity 

through association with the charged intermediates and transition structures, indicated in Figure 2 as 

taking place via direct binding to the sulfonate counterion. 

Figure 2. Proposed catalytic cycle for thiourea-catalysed episulfonium ion ring opening with indole. 

[Insert Figure 2] 

In order to identify the rate- and enantioselectivity-determining step in the catalytic mechanism, 

reaction progress kinetic analysis21 of the reaction employing substrate 1a, indole, thiourea 3e, and 

4-NBSA in toluene at 0 °C was conducted with in situ IR spectroscopy.22,23 Using reaction rates 

measured over 10% to 60% conversion with “different excess” experiments,22 the empirical rate 

equations were determined for both the racemic reaction catalysed by only 4-NBSA (equation 3) and 

the asymmetric reaction co-catalysed by 4-NBSA and thiourea (equation 4). 

rrac = d[1a]/dt = krac [4-NBSA]T [indole]      (3) 

rasym = d[1a]/dt = kasym [4-NBSA]T [3e]T [indole]    (4) 

Here, krac is the second-order rate constant for the racemic reaction, and kasym is the third-order rate 

constant for the asymmetric reaction, and [4-NBSA]T and [3e]T are the total initial concentrations of 

acid and thiourea, respectively. 

The rate of the asymmetric reaction was accelerated by the chiral thiourea catalyst relative to the 

reaction catalysed by 4-NBSA alone. For instance, at 273 K, [3e]T = 50 mmol/L, rasym/rrac at 10% 

conversion of 1a is 43.4 ± 5.0. This rate acceleration corresponds to a lowering of the free energy of 

activation of the reaction by 3e by 2.0 ± 0.1 kcal/mol. 

The 0th-order rate dependence on 1a and first-order rate dependence on 4-NBSA indicate that 

quantitative protonation of the substrate occurs under the reaction conditions prior to the 
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rate-determining step (pKa (4-NBSA) ~ –7, pKa (1a) ~ 2).24 In support of this conclusion, treatment of 

substrate 1a with 1 equiv of 4-NBSA resulted in instantaneous, complete consumption of 1a and 

concomitant, quantitative formation of trichloroacetamide (the by-product generated during 

episulfonium ion formation) as determined by in-situ IR spectroscopy. The first-order dependence on 

indole in both the reaction catalysed by 4-NBSA alone or by 4-NBSA/3e reveals that indole is present 

in the rate-determining transition structure and that episulfonium•4-nitrobenzenesulfonate (existing 

predominantly as the covalent adduct) is the resting state of the substrate in the reaction.  The kinetic 

data are consistent with the reaction with indole involving either addition or reversible addition 

followed by slow re-aromatisation as the rate-determining step (Figure 2).  

To distinguish between these two possibilities, linear free energy relationship and kinetic isotope 

effect studies were carried out. In the racemic reaction catalysed by 4-NBSA alone, a linear correlation 

was observed between reaction rate and Mayr’s nucleophilicity parameter N for five different 

5-substituted indoles (log(krac) vs. sNN, R2 = 0.997), consistent with the indole addition step resulting 

in nucleophilic ring opening of episulfonium ion being the rate-limiting step.25 A correlation between 

indole nucleophilicity and rate was also obtained in the thiourea-catalysed reaction (log(kasym) vs. sNN, 

R2 = 0.757).  As discussed below, a strict linear correlation is not observed in this case because the 

Brønsted acidity of the indole N-H group also influences reaction rate in the thiourea-catalysed 

reaction (see Section C2). Evaluation of 3-deuterioindole in the thiourea-catalysed addition reaction 

revealed a very small effect of isotopic substitution (kH/kD = 0.93 ± 0.12).  This rules out 

re-aromatisation as the rate-determining step, which would be expected to display a significant 

primary isotope effect (kH/kD > 2.5),26 and is fully consistent with rate-determining indole addition.  

It can be concluded that indole addition is enantio-determining as well, since the product’s stereogenic 

centers are generated in this rate-determining step.27  

C. Elucidation of the Catalyst–Substrate Interactions in the Enantio-Determining Step 

While the kinetic studies served to define the stoichiometry of the transition structure in the rate- 

and ee-determining addition of indoles to 1, they do not provide any direct insight into the specific 

manner by which the thiourea catalyst induces rate acceleration and enantioselectivity.  This proved 
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attainable, however, through the series of structure-reactivity and structure-enantioselectivity studies 

detailed below.  

C.1 Thiourea Dual Hydrogen Bond Donation to the Sulfonate Anion 

Anion-binding catalysis has been recognised as the primary mode of substrate activation in a variety 

of asymmetric reactions involving H-bond donors.1 In studies relevant to the system described here, 

sulfonate ion association to urea or thiourea derivatives via dual hydrogen bond donation interactions 

has been identified in both binding and reactivity studies.28,29 To test whether such sulfonate binding is 

operative in the current reaction, model binding studies and catalyst structure–activity studies were 

conducted. Titration of solutions of thiourea 3e in d8-toluene with dibenzylmethylsulfonium triflate 

[(Bn2MeS)+(OTF)–] (5) revealed formation of a 1:1 complex as determined by 1H NMR. Resonances 

assigned to each of the thiourea N-H protons sharpened and shifted downfield upon complexation, 

consistent with a dual hydrogen bonding interaction.29,30 Perturbations to the chiral catalyst that 

diminished its ability to act as an H-bond donor, either by reduction of its acidity through substituent 

effects or by excision of one of the donor groups, led to strong or complete decreases in reactivity and 

enantioselectivity in the indole addition reaction (see Supplementary Information, Section 4).  These 

data, taken together with the strong ee-dependence on the sulfonate counterion of the Brønsted acid 

(Table 1) suggests strongly that the thiourea–sulfonate interaction is a key element in the mechanism 

for catalysis and stereoinduction. 

C.2 Hydrogen Bonding Interaction with the Indole N-H 

As noted above, a striking difference in enantioselectivity was observed between N-H indole and 

N-methyl indole analogs in the addition reaction (93% vs 3% ee using catalyst 3e in additions to 1a).  

This suggests an important organisation role of the indole N-H in the stereoinduction mechanism, 

likely through hydrogen bonding to a Lewis basic functionality on the catalyst. To define the 

catalyst-indole interactions, a structure-reactivity and structure-enantioselectivity relationship study 

was undertaken with a series of -nucleophiles (Figure 3a). In general, the absence of an N-H motif in 

a (1,3) relationship with the reactive nucleophilic site leads to very low levels of rate acceleration and 

enantioselectivity (entries 1-2 vs. entries 3-5).  
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[Insert Figure 3] 

Figure 3. Reactivity- and enantioselectivity- dependence on the presence and the acidity of a 

N-H bond in the nucleophile. a. Structure-reactivity and -enantioselectivity relationship of 

p-nucleophiles. a Yields and enantiomeric excesses were obtained under reaction conditions described 

in eq. 2. b The initial reaction rates with 4-NBSA alone (rrac) and with 4-NBSA/3e (rasym) were 

determined directly by in situ IR spectroscopy. The (rasym/rrac) value was not determined for 

benzotriazole (entry 2) because the kinetic analysis was complicated by the poor solubility of the 

nucleophile in the reaction medium. b. Correlation between the degree of rate acceleration by 3e over 

the background racemic reaction (kasym/krac) and the acidity of the N-H motif of 5-substituted indole 

derivatives (pKa). The rate data were obtained by in situ IR and 1H NMR spectroscopy (see 

Supplementary Information, Section 14 for detailed experimental procedure and data analysis). Error 

bars reflect the range of experimental data from 2-3 individual measurements, and the line represents 

the least-squares fit. 

 

To further probe the role of H-bonding interactions between indole nucleophile and catalyst, various 

5-substituted indoles were evaluated in competition experiments under both racemic and 

thiourea-catalysed reaction conditions. The degree of rate acceleration induced by thiourea 3e was 

found to be linked directly to the acidity of the indoles, and a linear correlation between log(kasym/krac) 

and the pKa of indoles was observed (Figure 3b). Therefore, in the presence of thiourea, the rate of the 

reaction is correlated not only to the intrinsic nucleophilicity of the indole, but also to its H-bond 

donor properties. No correlation was observed between reaction enantioselectivity and the acidity of 

the indoles, however, indicating that this interaction is likely to exist to a similar degree in both the 

major and the minor pathways. The kinetic data are thus consistent with general base activation of 

indole through an indole N-H–catalyst hydrogen bonding interaction in the rate-determining addition 

to episulfonium ions.31,32,33,34 Catalyst 3e possesses few Lewis basic functionalities – namely the 

thiourea, the amide, and perhaps the extended arene substituent – and therefore the possible catalyst 

H-bond acceptor sites are limited in number.  The similar reactivity and enantioselectivity displayed 
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with urea 4e and thiourea 3e would appear to rule out a direct role of the thiourea sulfur atom.  As 

discussed below, the extended aromatic plays a key role that can be tied to interactions with the 

episulfonium ion.  By this simple process of elimination, we therefore propose that the amide oxygen 

is the most likely H-bond acceptor site for activation of the indole.35,36  Consistent with this 

hypothesis, catalyst 3a was found to be more reactive than the corresponding thioamide analog in the 

model reaction (eq 2).  In addition, the reaction catalyzed by 3a is ca. 4 times as fast as the reaction 

with Schreiner’s thiourea [1,3-bis(3,5-bis(trifluoromethyl)phenyl)thiourea], which is a stronger 

H-bond donor but lacks an amide appendage.   

C.3 Stabilisation of the Cationic Transition State Through Cation-Interactions 

The strong correlation between reaction enantioselectivity and the identity of the arene on the 

catalyst suggests a direct role of the extended -system in the mechanism of stereoinduction.  In 

principle, this arene effect may be due primarily either to acceleration of the major pathway through 

transition state stabilisation, or to inhibition of pathways leading to the minor enantiomer through 

destabilising interactions.  This question was addressed through kinetic analysis of the reaction, 

taking advantage of the fact that the indole addition step is both rate- and ee- determining. The rate 

constant corresponding to the major pathway (kasym,major) could be deduced for catalysts 3a-3g from in 

situ IR-based kinetic measurements combined with er (enantiomeric ratio) determinations.  A strong 

correlation between this rate and reaction enantioselectivity was observed, with plots of ln(kasym,major) 

vs ln(er) providing a good linear fit (Figure 4a). This provides unambiguous evidence that 

enantioselectivity increases due to variation of the aryl component of the catalyst 3 are indeed tied to 

stabilisation of the major transition structure.14 The rate of the pathway leading to the minor 

enantiomer also displays a linear, positive correlation with reaction er, indicating that the minor 

transition structure is also stabilised selectively by the more enantioselective catalysts, albeit to a 

substantially lesser extent.   

[Insert Figure 4] 

Figure 4. Enantioinduction is achieved by the thiourea catalysts through a selective, attractive 

cation- interaction between the extended aromatic residue on the catalyst and the acidic 
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a-protons in the episulfonium ion. a. Correlation between rate and enantioselectivity of reactions 

catalysed by thioureas 3a-3g.  Each data point represents the average rate determined from two 

individual kinetic experiments, with the error bar showing the range of the measurements.  The rate 

constants for the major and the minor pathways (kasym,major and kasym,minor, respectively) are calculated 

on the basis of the rate equations (eqs. 3 & 4) and the following equations: (a) rasym = rasym,major + 

rasym,minor, (b) er = rasym,major/rasym,minor. Lines represent least-squares fits. b. 1H NMR binding study of 

thiourea and 5 in d8-toluene, showing attractive interactions between the aromatic group in 3e and the 

a-protons in 5. The resonances of the benzylic protons and the methyl protons in 5 are labled with blue 

and green dots, respectively. In the two bottom spectra, the methyl resonance overlaps with the solvent 

peak, but can be identified when zoomed-in c. Electrostatic potential maps for fully optimized 

structures (B3LYP/6-31G(d)) of the episulfonium ion derived from 1a and the sulfonium ion in 5, 

revealing a similar distribution of positive charge over the benzylic protons. Negative potentials are 

shown in red and positive potentials in blue. 

 

Insight into the nature of the transition state stabilising interactions that may be at play was 

provided through spectroscopic analysis of thiourea derivatives 3a and 3e complexed to a sulfonium 

ion model system.  The dibenzylmethylsulfonium ion triflate 5 was selected for these studies because 

episulfonium sulfonate could not be examined directly (see section B), and the cation in 5 was found 

by computational methods to have a very similar charge distribution to the episulfonium ion (Figure 4 

c).  With thiourea 3e, the resonances of the benzylic and the methyl protons of 5 underwent a 

significant upfield shift (0.6-0.8 ppm) upon formation of the 1:1 complex (Figure 4b).37  In contrast, 

the chemical shift of those protons was bearly perturbed to any measurable extent ( < 0.05 ppm) 

upon complexation of 5 with the thiourea derivative 3a, which lacks an aryl substituent. This points to 

an attractive cation- interaction between the -face of the arene in catalyst 3e and the sulfonium ion 

in the model system.38,39,40,41,42  Such interaction in the transition structure of the indole addition to 

episulfonium ions could underlie the observed enantioselectivity effects, as the cation- interaction 

would be expected to increase in magnitude with more extended aromatic substituents.43,44  Based on 
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the kinetic and enantioselectivity data, we therefore propose that the difference in the strength of the 

cation- interaction between the major and minor pathways lies at the origin of the observed high 

reaction enantioselectivity.6,14,45  It should be noted that on the basis of polarisability effects alone, 

which are known to correlate directly with cation- binding ability,46 the most expansive 

aryl-substituted catalysts 3f and 3g might be expected to be most enantioselective.  However, as 

noted above (Table 1) these two thiourea derivatives afford slightly lower ee’s in the model reaction 

than the smaller, phenanthryl catalyst 3e. The reason for the lack of an exact correlation between the 

polarisability of the aromatic substituent and reaction enantioselectivity has not yet been established; 

however, it seems reasonable to expect that any number of minor steric or conformational factors 

could attenuate the ability of the largest substituents to engage fully in the stabilising cation- 

interaction.  

Taken together, the data presented above allow construction of a detailed mechanistic model for the 

enantioselective reaction, wherein rate-acceleration and enantioselectivity are induced by the thiourea 

catalyst through a network of attractive non-covalent interactions.  In particular, we propose that the 

transition structure for the rate-determining addition of indole to the episulfonium ion is stabilised by a 

combination of anion binding of the thiourea to the sulfonate, general base activation of the indole via 

a catalyst amide–indole N-H interaction, and a cation- interaction between the arene of the catalyst 

and the benzylic protons of the episulfonium ion (Figure 5). We anticipate that characterisation of 

these enzyme-like non-covalent stabilising elements with small molecule catalysts such as 3e may 

enable the future design and application of such biomimetic strategies in organic asymmetric 

synthesis. 

[Insert Figure 5] 

Figure 5.  Proposed transition structure model. The transition structure for the rate-determining 

addition of indole to the episulfonium ion is stabilised by a combination of attractive, non-covalent 

interactions, including anion binding of the thiourea to the sulfonate, general base activation of the indole 

via a catalyst amide–indole N-H interaction, and a cation-p interaction between the arene of the catalyst and 

the benzylic protons of the episulfonium ion. 



12 

 

Methods 

General procedure for thiourea 3e-catalysed nucleophilic ring opening of episulfonium ions 

with indole derivatives. An oven-dried 1.5 dram vial was charged with substrate 1 (0.05 mmol, 1.0 

equiv), 3e (3.2 mg, 0.0050 mmol, 0.10 equiv), indole (11.7 mg, 0.10 mmol, 2.0 equiv) and 4Å 

molecular sieves (25 mg, powder, activated) under an atmosphere of N2. The vial was cooled to 

–30 °C, and toluene (1 mL) was added with stirring. Once the reactants and catalyst were fully 

dissolved, the mixture was cooled to –78 °C, and solid 4-NBSA (0.7 mg, 0.0035 mmol, 0.07 equiv) 

was added at once against a counterflow of N2. The resulting solution was stirred at –30 °C and the 

progress of the reaction was monitored by thin layer chromatography (TLC) (see Supplementary 

Information, Section 3).  When the progress of the reaction was determined to be complete, 

triethylamine (~10 L) was added at –30 °C. The resulting mixture was applied directly to a pipette 

column containing 4-5 cm of silica gel, and product was isolated by eluting hexanes/ethyl acetate 

(20:1 to 10:1) and solvent removal. 

The Supplementary Information contains: detailed experimental procedures, synthesis of 

substrates and catalysts, characterisation data for all new compounds, procedures and data for 

mechanistic investigations (including reaction progress kinetic analysis, linear free energy relationship 

studies with Mayr’s reactivity parameters, kinetic isotope effect studies, model binding studies by 1H 

NMR, and other experimental kinetic studies). Crystallographic information for compounds 2b, 2g 

and 2q have been deposited at the Cambridge Crystallographic Data Centre and allocated the 

deposition numbers (CCDC 862750, 862751 and 862752, respectively). 
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TOC Abstract: 
 
Arylpyrrolidino amidothiourea catalysts are shown to catalyse enantioselective ring-opening of 
episulfonium ions by indole derivatives. Catalysis and enantioinduction are achieved by selective 
transition state stabilisation of the major pathway in the rate- and selectivity-determining step through 
a network of attractive anion-binding, cation-, and hydrogen-bonding interactions between the 
catalyst and the reacting partners. 
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