Supplementary Information

Astrocytes regulate adult hippocampal neurogenesis through ephrin-B signaling

Randolph S. Ashton, Anthony Conway, Chinmay Pangarkar, Jamie Bergen, Kwang-Il Lim, Priya Shah, Mina Bissell, and David V. Schaffer

Inventory of Supplementary Information

Supplementary Fig. 1 related to Fig. 3

Supplementary Fig. 2 related to Fig. 2 and Fig. 4

Supplementary Fig. 3 related to Fig. 4

Supplementary Fig. 4 related to Fig. 5

Supplementary Fig. 5 related to Fig. 6

Supplementary Fig. 6 related to Fig. 7

Supplementary Fig. 7 related to Fig. 7

Supplementary Fig. 8

Supplementary Fig. 9 related to Fig. 7

Supplementary Table 1

Supplementary Figure 1, related to **Figure 3**. Quantification of hippocampal gliogenesis. Fc-ephrin-B2 does not affect gliogenesis in vivo. (a) In general, only a small fraction of BrdU⁺ cells co-labeled as astrocytes (GFAP⁺). (b) The percentage of non-radial GFAP⁺/BrdU⁺ astrocytes was not affected by Fc-ephrin-B2 induced signaling (n = 4 experimental replicates \pm s.d.).

Supplementary Figure 2, related to **Figure 2** and **Figure 4**. Ephrin-B2 expression upon astrocytic differentiation. In vitro analysis of ephrin-B2 expression in hippocampus-derived astrocytes and differentiated NSCs. (a) Using QPCR, we compared *efnb2* expression levels in cultures of NSCs, differentiated NSCs, and hippocampus-derived astrocytes. Hippocampus-derived astrocytes express *efnb2* at levels three order-of-magnitude higher than NSCs, and it appears as though *efnb2* expression increased as the fraction and maturity of astrocytes in the cell population also increased. Data is normalized to NSC *efnb2* expression level (*n* = 3, technical replicates ± s.d.). (b) NSCs were differentiated into oligodendrocytes (MBP⁺), astrocytes (GFAP⁺), and immature neurons (DCX⁺) and stained for expression of ephrin-B2 and EphB4. NSCs differentiated into astrocytes down-regulated EphB4 and up-regulated ephrin-B2 expression, while NSCs differentiated into neurons still expressed EphB4 on the cell soma. NSCs differentiated into oligodendrocytes did not express high levels of either ephrin-B2 or EphB4. The scale bar represents 10 μm.

Supplementary Figure 3, related to **Figure 4**. Ephrin-B2 shRNA screen. Screen for effective shRNA targeting *efnb2*. QPCR analysis of hippocampus-derived astrocytes expressing shRNA sequences designed to knockdown expression of *efnb2*. Five shRNA sequences were tested using human or mouse U6 promoters. Naïve astrocytes, NSCs, and astrocytes expressing a shRNA sequence targeting LacZ mRNA were used as controls, and data was normalized to *efnb2* expression of non-infected astrocytes (n = 3, technical replicates \pm s.d.).

Supplementary Figure 4, related to **Figure 5**. *In vivo* validation of astrocytic shRNA expression. We hypothesized that selective expression of GFP in hippocampal neurons (see **Figure 5**) was due to low activity of the ubiquitin-C promoter in astrocytes, not inactivity of the U6 promoter-shRNA cassette or a neuronal tropism of the lentiviral vector. (\mathbf{a} , \mathbf{b}) The ubiquitin-C promoter was replaced by a mouse (m) and a human (h) GFAP promoter, and as evidenced by histology, the new shRNA vectors were expressed by GFAP⁺ astrocytes proving that prior localization of GFP expression to neurons was an artifact of the ubiquitin-C promoter. Dotted line marks SGZ/Hilus boundary and dashed line marks GCL/MCL boundary. (\mathbf{c}) QPCR analysis of shRNA vector-expressing astrocytes in culture demonstrated sustained effectiveness of the *efnb2* shRNA #1 and #2 vectors (n = 3, technical replicates \pm s.d.).

Supplementary Figure 5, related to **Figure 6**. Effect of Fc-ephrin-B2 on Nestin⁺ (β-gal⁺) NSCs *in vivo*. (a) In fate mapping experiments using *Nestin-CreER*^{T2}; *R26-stop*^{fl/fl}-*lacZ* mice, the proliferative rate of recombined cells was consistent between Anti-Fc and Fc-ephrin-B2 experimental groups indicating that the increase in BrdU⁺ cells observed in **Figure 3c** was not due to ephrin-B2 induced proliferation of Nestin⁺ NSCs (n = 4 experimental replicates ± s.d.). (b) Analysis of cell phenotype amongst clonal β-gal⁺ cell clusters at Day 5 showed a similar distribution as observed at the population level in **Figure 6d-h** and no significant change in levels of gliogenesis between Anti-Fc and Fc-ephrin-B2 treated groups. ** indicates P < 0.05; n = 4 brains, analyzed 8 hippocampal sections per brain.

Supplementary Figure 6, related to Figure 7. In vitro validation of lentiviral vectors encoding Tcf-Luc reporter (TFP), dnWnt-IRES-GFP (dnWnt), and IRES-GFP (dnWnt Control) cassettes. Naïve NSCs, NSCs infected with TFP vector, and NSCs co-infected with TFP and either dnWnt or dnWnt control vectors were assayed for their ability to report β -catenin signaling, as evidenced by luciferase expression, in response to a 24-hour incubation in Wnt3a supplemented (200 ng/mL) or standard media. No Luc expression was observed in the absence of Wnt3a, and a significant decrease in Wnt3a-induced Luc reporting was observed in NSCs expressing dnWnt as compared to the dnWnt control construct, thus validating proper activity of the three constructs (n = 3 technical replicates \pm s.d.). * indicates a P < 0.01.

Supplementary Figure 7, related to **Figure 7**. Fc-ephrin-B2 induces expression of *Mash1* and *NeuroD1* in NSCs *in vitro*. Similar to experiments in **Figure 1**, Fc-ephrin-B2 stimulation also induced a dose-dependent increase in the expression of two proneural transcription factors, *Mash1* and *NeuroD1*, known to play important roles in adult hippocampal neurogenesis (n = 3, technical replicates \pm s.d.). * indicates P < 0.01.

Supplementray Figure 8. Proposed model of ephrin-B2 signaling in regulating adult neurogenesis. In the SGZ, ephrin-B2 $^+$ hippocampal astrocytes induce neuronal differentiation of Sox2 $^+$ /EphB4 $^+$ NSCs through juxtacrine ephrin-B2/EphB4 forward signaling via a β -catenin dependent mechanism. However, the effect EphB4/ephrin-B2 reverse-signaling on hippocampal astrocytes remains unknown.

Supplementary Figure 9. Full-length pictures of the blots presented in **Fig. 7**. Each experimental group was assayed at both 8 and 24 h post-treatment. The bands for the 24-hour time point are included in **Fig.7**.

Supplementary Table 1. shRNA primers for RNAi.

Efnb2	
shRNA	Primer Sequence
h2	5'-
112	AAAATTAATTAAAAAGCCAAATTTCTACCCGGACATCTCTTGAATGTCCGGGTAG
	AAATTTGCCGGTGTTTCGTCCTTTCCACAGATATATAAAGCC-3'
1-0 (#4)	
h3 (#1)	5'-
	AAAATTAATTAAAAAGCCGCAGGAGACACCGCAAATCTCTTGAATTTGCGGTGT
	CTCCTGCGGCGTGTTTCGTCCTTTCCACAAGATATATAAAGCC-3'
h4	5'-
	AAAATTAATTAAAAAGAGCCGACAGATGCACTATTTCTCTTGAAAATAGTGCATC
	TGTCGGCTCGGTGTTTCGTCCTTTCCACAAGATATATAAAGCC-3'
h5	5'-
	AAAATTAATTAAAAAGCAGACAAGAGCCATGAAGATCTCTTGAATCTTCATGGCT
	CTTGTCTGCGGTGTTTCGTCCTTTCCACAAGATATAAAAGCC-3'
m1 (#2)	5'-
	AAAATTAATTAAAAAGGCTAGAAGCTGGTACGAATTCTCTTGAAATTCGTACCAG
	CTTCTAGCCAAACAAGGCTTTTCTCCAAGGGATATTTATAGTCTC-3'
m2	5'-
	AAAATTAATTAAAAAGCCAAATTTCTACCCGGACATCTCTTGAATGTCCGGGTAG
	AAATTTGGCAAACAAGGCTTTTCTCCAAGGGATATTTATAGTCTC-3'
m5	5'-
	AAAATTAATTAAAAAGCAGACAAGAGCCATGAAGATCTCTTGAATCTTCATGGCT
	CTTGTCTGCAAACAAGGCTTTTCTCCAAGGGATATTTATAGTCTC-3'
LacZ	5'-GGGGTTAATTAAAAGGTCGGGCAGGAAGAGGGC-3'
sense	
LacZ	5'-GGGGTTAATTAAAAAAGTGACCAGCGAATACCTGTTCTC-3'
anti-	
sense	