Supplementary information

Orchestrated experience-driven *Arc/Arg3.1* responses are disrupted in a mouse model of Alzheimer's disease

Nikita Rudinskiy¹; Jonathan M. Hawkes^{1,2}; Rebecca A. Betensky³; Megumi Eguchi⁴; Shun Yamaguchi⁴; Tara L. Spires-Jones¹; Bradley T. Hyman^{1*}

¹Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital / Harvard Medical School, Charlestown, Massachusetts 02129, USA. ²Behavioral Neuroscience Program, Northeastern University, Boston, Massachusetts 02115, USA. ³Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA. ⁴Division of Morphological Neuroscience, Gifu University Graduate School of Medicine, Gifu 501–1194, Japan.

Contents:

Supplementary Figures 1-4

Supplementary Table 1

* To whom correspondence should be addressed. E-mail: <u>bhyman@partners.org</u>

Supplementary Figure 1. Arc protein co-localizes with dVenus.

Immunohistochemical staining for Arc and dVenus in different brain regions of *Arc::dVenus* mice sacrificed two hours after the end of visual stimulation. Time point of two hours was chosen as having sufficient levels of both Arc and dVenus proteins (Supplementary Fig. 4, ¹⁰). Green – dVenus, red – Arc. (a) Dentate gyrus region of hippocampal formation. Scale bar = 500 μ m. (b) Neuronal layer II/III of medial extrastriate cortex. Scale bar = 200 μ m. Occasional lack of colocalization of Arc::dVenus with endogenous Arc protein is expected due to different dynamics of *Arc::dVenus* and *Arc* mRNA expression in response to a stimulus as reported in ¹⁰.

Time after the end of stimulation

Supplementary Figure 2. Time course of Arc::dVenus expression in the visual cortex following 1-hour structured visual stimulation in the cylinder with vertical stripes.

(a) Maximum intensity projections of *in vivo* image stacks of the same region of medial extrastriate visual cortex imaged at several time points after the end of stimulation. Scale bar = 100 μ m. (b) Dynamics of Arc::dVenus fluorescence intensity in individual neurons over time. Data presented as medians with interquartile ranges. N = 4 mice, 2060 neurons.

Supplementary Figure 3. Low-resolution *in vivo* overview image of Arc::dVenus fluorescence in mouse right visual cortex.

Arc::dVenus fluorescence was imaged 6 hours after standard 1-hour visual stimulation in an illuminated cylinder with vertical stripes (**a**) and after 7 hours of continuous visual stimulation with white light (**b**). In (**a**) Arc::dVenus signal is localized to the medial aspect of visual cortex, while in (**b**) it is concentrated more laterally. (**c**) Superimposed outlines of bright areas from (**b**) and (**c**). Scale bar = 1000 μ m.

Supplementary Figure 4. Cranial window implantation causes no overt inflammatory response in the cortex of *Arc::dVenus* and *Arc::dVenus*×*APP/PS1* mice.

(**a**–**b**) Immunohistochemical staining for microglia marker Iba1 (**a**) and activated astrocytes marker GFAP (**b**) of medial extrastriate visual cortex (layer II/III) of *Arc::dVenus*×*APP/PS1* mouse and *Arc::dVenus* control littermate sacrificed 3 weeks after implantation of a cranial window. Left panels – right medial extrastriate visual area (covered by cranial window); right panels – left medial extrastriate visual area (contralateral to cranial window). Red – Iba1 (**a**) / GFAP (**b**) ; white – amyloid plaques stained with methoxy-X04. Scale bar = 300 µm.

Reference	Species / model	Brain region / cell type	AD-related pathology	Arc induction	Arc ↑ or ↓ in AD-related pathology	Protein/RNA
45	Ms brain	Hippocampus	Aged Tg2576	Fear conditioning and baseline	n.c.	protein
33	Hu brain ; ms neuronal culture	MFC; cortical primary cultures	Advanced AD; synthetic Aβ dimers	No	1	protein
46	Ms brain	Whole brain	Aged CRND8	Basal and running wheel	n.c.	protein
39	Ms brain	Hippocampus	Aged rTg4510 (tangles)	Env. enrichment	\checkmark	RNA
31	Ms brain	Hippocampus	Young (preplaque) Tg2576 and APP/Lo	Basal, fear cond., Morris WM	\uparrow	protein
43	Ms brain	Hippocampus and neocortex	Young and aged APP/PS1, APPDutch, and APP23	Env. enrichment	\checkmark	protein
29	Ms brain	Hippocampus and cortex	Young (preplaque) APP/PS1	No	1	Reporter under Arc promoter (RNA)
35, 42	Rat neuronal culture	Cortical primary cultures	Synthetic Aβ	BDNF	\checkmark	protein
34	Ms brain	Hippocampus	4-7 mo hAPP-J20	no	both \uparrow and \downarrow	protein
38	Ms neuronal culture	Cortical primary cultures	Synthetic Aβ	BDNF	\downarrow	protein
44	Ms brain	Hippocampus and cortex	Young (preplaque) hAPP(low)	Env. enrichment	n.c.	protein
41	Ms brain	Hippocampus and cortex	Young (preplaque) hAPP(FAD)	Basal and env. enrichment	↓ in DG, n.c. elsewhere	protein, RNA
32	Rat brain	Hippocampus	LPS infusion	Basal and env. enrichment	\uparrow	protein, RNA
30	Rat neuronal culture	Hippocampal primary cultures	Synthetic Aβ	No	1	protein
36, 37	Ms brain	Hippocampus	Aged APP/PS1	no	\checkmark	RNA
40	Hu brain	Hippocampus	Neurons with NFT	No	\downarrow	RNA

Supplementary Table 1. Summary of effects of AD-related pathologies on activity-induced or basal *Arc* expression reported in the literature.

Green entry – reported overall increase of Arc protein or RNA linked to AD; red – decrease; blue – no change or both directions. Ms, mouse; hu, human; DG, dentate gyrus of hippocampus; MFC, medial frontal cortex; NFT, neurofibrillary tangles; LPS, lipopolysaccharides.