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Supplemental Experimental Procedures 

Optimisation of the choice pairs used in the task 

The goal of our experiment meant that it was necessary to optimise the choice pairs that we 

used both in the screening questionnaire and in the main fMRI task.  

In the pre-screening it was important to optimise choices such to give the most efficient 

estimate of potential subjects’ discount rates. To optimise these choices, we generated a 

random 100 choice pairs, each comprising one smaller, sooner reward and one larger, more 

delayed reward, but with the magnitudes and delays varying across the pairs. We then 

computed the decisions predicted by simulated subjects whose discount rates ranged from 0 

to 1. When plotted (figure S1), the closer this graph is to the diagonal, the better different 

discount rates are reflected in different subject’s choice preferences, and therefore the lower 

the error introduced by the model estimation process. We generated 10,000 such choice sets 

and chose the set whose curve was closest to the diagonal (in terms of enclosed area). Figure 

S1 plots the predicted choices from this choice set.    



 

Figure S1, related to figure 1 

The choice set was optimised, such that different discount rates (k) would be reflected in 

different choices.   

 

In the fMRI task, the choice set was optimised to minimise the correlation between the fMRI 

regressors of individuals with sufficiently divergent discount rates – we expected that the 

mPFC BOLD signals would correlate with value difference (Boorman, Behrens, Woolrich, & 

Rushworth, 2009; FitzGerald, Seymour, & Dolan, 2009) and so we ensured that the value 

difference (chosen minus unchosen values) would decorrelate across partners selected to have 

different discount rates. However, we took the precaution to also ensure that the chosen value 

signals would also decorrelate across the two partners, as there have been some reports of 

vmPFC correlates of chosen value (Wunderlich, Rangel, & O’Doherty, 2010). 

To optimise the choice pairs for these purposes, we used a procedure similar to above. Here, 

each choice set consisted of 120 pairs. Again, we generated 10,000 random examples of such 

choice pairs. Now, however, we computed the value regressors for 100 simulated individuals 



with discount rates ranging from 0 to 1. We computed the cross-correlation matrix between 

the value regressors for each simulated subject (figure 1b), and selected the choice-pair set 

that generated the lowest average correlation across all simulated subjects. In this choice set, 

magnitudes ranged between £0.92 and £34.56 for sooner options, with their delays ranging 

from 0 to 6 weeks. For the more delayed options of each pair, the magnitudes ranged from 

£5.79 to £74.38, and the length of delays from 1 to 75 weeks, since these provided the lowest 

correlations in self and other choices and values. This procedure ensured we could 

subsequently select partners whose signals (unique to their personal discount rate) could be 

dissociated in the value-related BOLD signals of interest (see below).   

It may seem counter-intuitive that two players with opposing preferences can have 

decorrelated value functions. However, it turns out this is possible if they are faced with 

carefully selected choices. For example, consider the four trials shown in the following Table 

S1. In these 4 trials, the low discounter has value differences of (5,100,100,0); the high 

discounter has value differences of (100,100,5,5).  The correlation between these two vectors 

is 0, despite the fact that the opposite choice was made on three of the four trials. 

 

Table S1, related to Figure 1. 

Choice A 105 today 100 today 30 today 20 today 

Choice B 110 6 months 0 today 130 two months 25 tomorrow 

Low discounter A value 105 100 30 20 

Low discounter B value 110 0 130 25 

High discounter A value 105 100 30 20 

High discounter B value 5 0 25 15 

Low discounter value 

difference 

5 100 100 5 

High discounter value 

difference 

100 100 5 5 



Training and performance on delegated choice task 

Prior to scanning, partners completed a trial-and-error learning task in a context where each 

could learn their partner’s preferences  by reviewing the choice pairs used in the screening 

questionnaire and selecting the options they thought might have been previously chosen by 

their partner. Trial-by-trial feedback informed participants whether or not they had correctly 

estimated their partner’s choice. Participants were effective in learning to replicate their 

partner’s choices as their total number of smaller-sooner choices differed, on average, by 

only 4.5% (figure 1d).  

Then, during fMRI scanning, participants were presented with a new set of intertemporal 

choices in blocks of 40 trials. In each block they made choices either on behalf of themselves, 

or their partner. At the end of the experiment two of their actual choices would be realised – 

one prize randomly selected from the self-regarding blocks would go to the subject, and one 

from the other-regarding blocks to the partner. Again in this experimental context subjects 

were reliably able to replicate their partner’s behaviour (8.24% difference between the 

partner’s choices and the subject’s estimation of the partner’s choices (fig 1d)).  

 

The temporal discounting model 

Each pre-screened participant’s unique discount rate was estimated by fitting a discount 

function to their 100 questionnaire choices, whereby the discounted value of an option (Vd) 

varies hyperbolically as a function of reward magnitude (M) and delay (D). The impact of 

delay depends on the participant’s unique discount rate (k).  



 

Given a subjective (i.e. temporally discounted) value associated with each of the two options 

in the pair, the associated probability of making each choice is estimated through the 

following logit transform where β > 0 and determines the randomness of the decision (with 

larger numbers indicating more random choice):  

 

This is a standard stochastic decision rule that calculates the probability of taking one of two 

actions according to their relative subjective values. 

This model was fit to participants’ choices in the pre-screen questionnaire, optimising the 

model’s free parameters (k) and (β) to maximise the likelihood of the choices given the 

parameters. This was realised through standard Matlab functions. We used Bayesian 

information criterion (BIC) to compare model performance between self and other choice 

conditions (Schwarz, 1978).  

 

Model fitting results 

During pre-screening, the mean fitted discount rate was 0.02 for the low discounters selected 

for the main experiment (se=0.004) and 0.75 for the high discounters (se=0.12).  

During scanning, the model fitted equally well when choosing for self (BIC 75.36 (se=6.13)) 

and other (BIC 76.31 (se=4.90)). For low discounters, the mean fitted discount rate was 0.03 

when choosing for self (se=0.01) and 0.80 when choosing for their partner (se=0.11). For 

 

 



high discounters, the mean fitted discount rate was 0.63 when choosing for self (se=0.15) and 

0.02 when choosing for their partner (se=0.01).  

The value regressors used for analysing the fMRI data were computed using the hyperbolic 

discount function and the participant’s own unique discount rate (for self-relevant values) and 

their partner’s discount rate (for other-relevant values). For our study, it was vital that these 

regressors were decorrelated with each other, as would be predicted by the divergent discount 

rates of our participant pairs. This was indeed the case. There were no significant correlations 

between the self value (chosen minus unchosen) and other value (would have been chosen 

minus would have been unchosen) regressors, both when choosing for self (mean R = -0.094, 

p=0.36) and when choosing for other (mean R = -0.134, p=0.20).  

 

fMRI data acquisition 

We scanned participants in a 3T Allegra head scanner (Siemens, Erlangen, Germany) 

operated with its standard head transmit-receive coil. The manufacturer’s standard automatic 

3D-shim procedure was performed at the beginning of each experiment. Participants were 

scanned with a single-shot gradient-echo EPI sequence, optimized to reduce BOLD 

sensitivity losses in the orbitofrontal cortex due to susceptibility artifacts (Weiskopf, Hutton, 

Josephs, & Deichmann, 2006). Imaging parameters were as follows: 48 oblique transverse 

slices tilted by 45
o
, slice thickness = 2mm with a 1mm gap between slices, repetition time TR 

= 2.88s, α = 90°, echo time TE = 30ms, BWPE = 42 Hz/pixel, negative phase-encoding 

gradient polarity, field of view = 192×216 mm
2
, 3 × 3 mm in-plane resolution, matrix size 

64×72, fat suppression, z-shim gradient pre-pulse moment = -1.4 mT/m×ms. EPI data 

acquisition was monitored on-line using a real-time reconstruction and quality assurance 

system (Weiskopf et al., 2007). We acquired fieldmaps for each subject at the start of 



scanning (Siemens standard double echo gradient echo fieldmap sequence, echo time = 12.46 

ms, TR = 10.2 ms, matrix size = 64×64, 64 slices covering the whole head, voxel 

size=3×3×3mm). These allowed calculation of static geometric distortions caused by 

susceptibility-induced field inhomogeneities, which were used to correct EPI images for both 

these static distortions and any changes in these distortions due to head motion (Andersson, 

Hutton, Ashburner, Turner, & Friston, 2001; Hutton et al., 2002). We also recorded heart rate 

with a pulse oximeter, along with respiratory phase and volume using a breathing belt, which 

were used to correct for physiological noise during data analysis. At the end of the scanning 

session, we acquired a T1-weighted anatomical scan for each participant using a Modified 

Driven Equilibrium Fourier Transform (MDEFT) sequence (Uğurbil et al., 1993), with 

optimised parameters as described in the literature (Deichmann, Schwarzbauer, & Turner, 

2004). For each participant, 176 sagittal partitions were acquired with an image matrix of 

256×224 (Read × Phase). 

 

fMRI data analysis 

Image pre-processing and data analysis were implemented using Statistical Parametric 

Mapping software in Matlab R2010b (SPM8; Wellcome Trust Centre for Neuroimaging, at 

UCL). After discarding the first 6 volumes of each session, to allow for T1 equilibration, EPI 

images were corrected for geometric distortions caused by susceptibility-induced field 

inhomogeneities. Fieldmaps were processed for each participant using the FieldMap toolbox 

(Hutton, Deichmann, Turner, & Andersson, 2004). The EPI images were then realigned and 

unwarped (Andersson et al., 2001), and each participant’s structural image was then co-

registered to the mean of the motion-corrected functional images using a 12-parameter affine 

transformation, and segmented according to the standard procedure in SPM8 (Ashburner & 



Friston, 2005). The spatial normalization parameters resulting from the previous step were 

then applied to the functional images to allow for inter-subject analysis, and finally these 

images were smoothed using an 8mm FWHM Gaussian kernel, in accord with the standard 

SPM approach. 

For each participant, we constructed an event-related general linear model, including 

regressors for our value signals of interest (see main text methods). One participant was 

removed from analysis, after their choices during scanning indicated especially low accuracy 

in replicating their partner’s preferences (30% difference). Trials in which participants chose 

for self and for other were modelled on separate regressors, and each was parametrically 

modulated by the mean-corrected self and other values. These value regressors were 

computed trial-by-trial based on the self and other specific discount rates, with increasing 

numbers reflecting the parametric effect of increasing value. Values for the options chosen 

and unchosen (or what would have been chosen or unchosen when the values were irrelevant 

for choice) were computed and modelled separately so that their difference could be taken. 

Values in each regressor were mean corrected and normalised to unit standard deviation. 

Onsets were set at the start of the choice phase (i.e. when the two choice options appear on 

the screen), modelled with a duration of the length of the particular trial’s RT (or up to 4 

seconds, whichever was sooner), and convolved with the standard canonical haemodynamic 

response function in SPM8. Button presses were modelled as a regressor of no interest 

parametrically modulated by RT. Head motion parameters defined by the realignment 

procedure were entered as 6 regressors of no interest, along with 17 additional regressors of 

cardiac phase (10 regressors), respiratory phase (6 regressors) and respiratory volume (1 

regressor). For details of thresholding and statistical testing, see main text. 

 



Breakdown of peaks selected for figure 3D temporo-parietal cortex results 

As shown in figure 2b and figure S2e, a dorso-ventral gradient existed bilaterally in temporo-

parietal cortex along the axis of executed vs. modelled value differences. We therefore 

subjected these regions to a formal test that the dorsal and ventral portions of temporo-

parietal cortex (TP) switched agents between conditions. Data were extracted from the 

following value-related peaks (in MNI space) in one choice condition in order to test the 

direction of value correlations in the alternative choice condition, therefore obviating 

questions of multiple comparisons.  

Right hemisphere: 

ventral TP – selected from other choice, other minus self value difference, and used for 

extracting data from the self choice condition = -42, -55, 19 (t=4.54. z=3.66) 

ventral TP – selected from self choice, self minus other value difference, and used for 

extracting data from the other choice condition = -63,-61,16 (t=3.98, z=3.33) 

dorsal TP – selected from other choice, self minus other value difference, and used for 

extracting data from the self choice condition = -42,-52,43 (t=2.68, z=2.43)  

dorsal TP – selected from self choice, other minus self value difference, and used for 

extracting data from the other choice condition = -48,-37,46 (t=2.40, z=2.21) 

Left hemisphere: 

ventral TP – selected from other choice, other minus self value difference, and used for 

extracting data from the self choice condition = 51,-52,13 (t=3.51, z=3.02) 

ventral TP – selected from self choice, self minus other value difference, and used for 

extracting data from the other choice condition = 54,-40,16 (t=3.91, z=3.28) 



dorsal TP – selected from other choice, self minus other value difference, and used for 

extracting data from the self choice condition = 36,-67,43 (t=2.77, z=2.50)  

dorsal TP – selected from self choice, other minus self value difference, and used for 

extracting data from the other choice condition = 51,-40,46 (t=3.41, z=2.95) 
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Figure S2, related to Figure 2.  

A-D show the subject-by-subject gradients for executed minus modelled value in the mPFC 

(a) and TPC (b), while there is a lack of such a gradient for self minus other values in both 

the mPFC (c) and TPC (d). The x axis shows the gradient from most ventral (left) to most 

dorsal (right). 

E shows sagittal slices through right temporo-parietal cortex. This is exactly as in Figure 2b, 

but showing the location of temporo-parietal cortex gradient on sagittal sections. 

 

Table S2, related to Figure 2: Effects of executed vs. modelled value differences averaged 

across conditions (as shown in figure 2b). 

Brain regions 

MNI coordinates 

of local maxima 

Voxel number at 

p<0.001 

uncorrected  Voxel t score 

Executed  Value (Chosen > 

Unchosen) > Modelled Value 

(Best > Worst) 

   

Right middle temporal gyrus  54, -7, -11 715 7.90 



 

 

Table S3, related to Figure 3: Whole-brain corrected activations associated with the simple 

effects of value (and value differences) illustrated in figures 3A and B.  Results are only 

shown if whole-brain FWE corrected at p < 0.05, with a threshold of p < 0.001 voxel-level 

uncorrected and a cluster extent threshold of 20 voxels. 

Brain regions MNI coordinates of 

local maxima 

Voxel number at 

p<0.001 uncorr  

Voxel t score 

Self  Chosen Value during 

Self Choice 

   

Left Middle temporal 

Temporal lobe 

-60, -64, 22 

42, -25, -8 

171 

140 

6.09 

6.09 

Left  Temporoparietal cortex 

(including ventral TPJ) 

Posterior Cingulate 

Left temporal pole 

vmPFC  

Left fusiform gyrus  

Left parahippocampal gyrus  

Right Temporoparietal cortex 

(including ventral TPJ) 

-39, -64, 22                                  

 

-18, -40, 58 

-48, 11, -38 

0, 14, -8 

-39, -16, -23 

-24, -37, -17 

60, -61, 4 

364 

 

1179 

81 

254 

552 

90 

409 

7.59 

 

7.14 

6.74 

6.56 

6.37 

5.58 

5.57 

Modelled Value (Best > 

Worst) > Executed Value 

(Chosen > Unchosen) 

   

Left dmPFC  

Right middle frontal gyrus 

Right dorsal TPJ 

Posterior Cingulate 

-12, 47, 22 

42, 20, 49 

51, -67, 37 

3,- 40, 3 

84 

35 

32 

7 

4.57 

4.53 

4.32 

4.1 



Trend Right Middle 

temporal 

 

63, -58, 13 66 5.72 

Self Unchosen Value during 

Self Choice 

No significant 

results 

  

    

Self  Value Chosen > 

Unchosen during Self choice 

   

Trend Angular Gyrus 

 

-54, -55, 25 89 5.50 

Self  Value Unchosen > 

Chosen during Self choice 

No significant 

results 

  

    

Other Best Value during Self 

Choice 

No significant 

results 

 

  

Other Worst Value during 

Self Choice 

No significant 

results 

  

    

Other Value Best > Worst 

during Self Choice 

   

Trend Middle frontal 

Anterior cingulate 

 

24, 56, 28 

3, 41, 25 

62 

79 

5.93 

5.00 

Other Value Worst > Best 

during Self Choice 

No significant 

results 

  

    

Other  Chosen Value during 

Other Choice 

   

Fusiform gyrus 

Middle temporal 

Lingual gyrus 

Postcentral gyrus 

Medial orbital 

Inferior temporal 

 

47, -25, -17 

-63, -55, 10 

-15, -64, -5 

39, -40, 64  

-6, 17, -14 

51, -46, -26 

410 

644 

596 

1426 

349 

88 

7.55 

7.00 

6.77 

6.55 

5.89 

5.83 

Other  Unchosen Value 

during Other Choice 

No significant 

results 

  

    

Other  Value Chosen > 

Unchosen during Other 

Choice 

   

Postcentral gyrus 27, -43, 64 1498 9.29 



Medial orbital 

Fusiform gyrus 

Superior temporal 

Middle temporal 

Parahippocampal 

 

-6, 23, -11 

-27, -37, -17 

57, -1, -8 

-48, -1, -20 

-21, -10, -29 

221 

75 

1226 

235 

84 

7.36 

7.09 

6.91 

6.30 

6.04 

Other Value Unchosen > 

Chosen during Other Choice 

   

Insula 

 

-30, 26, -2 51 7.32 

Self Best Value during Other 

Choice 

No significant 

results 

  

    

Self Worst Value during 

Other Choice 

No significant 

results 

  

    

Self  Value Best > Worst 

during Other Choice 

No significant 

results 

  

    

Self  Value Worst > Best 

during Other Choice 

No significant 

results 
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A



 

Figure S3, related to Figure 3.  

A: Formal test that temporo-parietal cortices exchange agents between choice conditions, as 

in figure 3d, but data shown separately for both hemispheres.  

B: A region of dorsal ACC/pre-SMA was found to be correlated with unchosen (minus 

chosen) executed values, both in the case of self value during choices for self (left figure, 

MNI peak -9, 20, 46, t=3.76, z=3.19) and other value during choices for other (right figure, 

MNI peak 6, 17, 49, t=5.26, z=4.04). These regions were caudal to the modelled value 

difference signal reported in the main paper. 

 

This effect of unchosen value is notable because the region is adjacent to the rostral dmPFC 

that we focus on in the study, but it has a very different coding pattern (it codes for executed 

rather than modelled value difference, and it does so negatively rather than positively). This 

region lies on the boundary of the Anterior cingulate cortex and the pre-supplementary motor 

area. It is different both anatomically and functionally from the more rostral dmPFC region 

that we have focused on in this study. This ACC/pre-SMA region is commonly activated in 



conflict studies (Ridderinkhof, Ullsperger, Crone, & Nieuwenhuis, 2004); and in decision-

making studies, where it often correlates inversely with value difference (Hare, Schultz, 

Camerer, O’Doherty, & Rangel, 2011; Wunderlich, Rangel, & O’Doherty, 2009). The region 

that we have focused on for this study is rostral to this ACC/pre-SMA region. It is on the 

boundary of medial area 9 and medial polar area 10. Whilst its function is much less well 

defined, it is predominantly activated in studies of theory of mind (Frith & Frith, 2006; 

Hampton, Bossaerts, & O’Doherty, 2008), social cognition (Behrens, Hunt, & Rushworth, 

2009; Behrens, Hunt, Woolrich, & Rushworth, 2008) and goal-directed planning (Yoshida & 

Ishii, 2006). Indeed, in figure 2 of the main text, we deliberately focus only on a region of 

interest that correlates positively on average with value difference.  That is, we are 

deliberately excluding from the analysis regions such as the ACC/preSMA that correlate 

negatively with value difference. 

 

Removal of possible outlier participant pair 

Any correlation between value difference regressors of the two confederates will reduce the 

sensitivity of the test by increasing the variance of the contrast estimate. One participant pair 

were slightly more anticorrelated than all others. They can be seen as an outlier on the 

correlation plot in Figure 1C. Indeed, this pair only exhibited a correlation in the region of -

0.4, meaning that the two regressors shared only approximately 16% of their variance. 

However, to be sure that our effects were not being driven significantly by this pair, we re-ran 

our analyses after removing these two participants.  

After removing this participant pair, the key tests of the gradient analysis within mPFC (as in 

Figure 2C) remained significant: Exec – mod gradient t(16)=6.26, p<0.00005. Self – other 

gradient t(16)=-0.807, p>0.4. Paired t-test t(16)=5.76, p<0.00005.  



The key results of the switching analysis (as in Figure 3D) also remained significant after 

removing this outlier pair: 3-way interaction F(1,16)=21.91, p<0.0001, vmPFC 2way 

interaction = F(1,16)=7.63, p=0.014, dmPFC 2way interaction F(1,16)=9.43, p=0.007.  
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