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Supporting Methods. First dataset. Estimated low latitude shallow-
sea temperatures came from the red curve of figure 4 in ref. 1,
provided courtesy of Dana Royer. They derive from a measure of
the ratio of 18O: 16O stable isotopes (δ18O) from mainly low
latitude shallow-sea calcitic and phosphatic shells, mainly bra-
chiopods but also conodont elements and belemnites (2). The
temperature measures incorporate a correction for the effect
of seawater pH on the δ18O of carbonates (1), which were first
detrended and then averaged in 10 Myr timesteps using a 50 Myr
moving window (1). Atmospheric CO2 concentrations (RCO2 ¼
ratio of mass of CO2 at time t to that at present), as used in ref. 1,
were also provided courtesy of Dana Royer. They derive from the
GeoCarb-III model (3) and were used (1) as one of the driving
variables to estimate changes in seawater pH (above). These
10 Myr interval data were based on an old time scale (4) not used
by the other variables in the dataset hence were rescaled to new
estimated dates based on a newer time scale (5) using linear in-
terpolation across the interval boundaries.

Data on the richness, origination, and extinction of marine
invertebrates per stage were taken from the stage level global
compendium of Sepkoski (6), which records the first and last oc-
currences of genera and assumes that taxa occur in all intervening
stages (“range-through”). The measures used ignore single inter-
val taxa (singletons) and are therefore more robust than simply
summing all taxa within a bin to variations in interval duration
and preservation (7). The richness measure for each stage simply
ignores single interval taxa, while the origination and extinction
rates, p and q in ref. 7, are instantaneous per capita rates (per
million years) that only use information from taxa that cross stage
boundaries.

Sample standardized data on marine invertebrate richness,
evenness, origination, and extinction rates were provided cour-
tesy of John Alroy. Richness measures came from two methods:
Item quota subsampling (IQS) (8) and the shareholder quorum
subsampling (SQS) (9). The data derive from fossil collections
data stored in the Paleobiology Database. IQS is based on the
richness of taxa in a given sample quota of specimens drawn from
a random subset of available collections. IQS is used here (figure 1
in ref. 8) not only to assess sensitivity of the results to different
richness measures but also because it has been used to demon-
strate some other important features of paleodiversity relevant
to our analyses (10, 11). However IQS tends to underestimate
richness in diverse communities because it is harder to randomly
sample rare taxa with standard rarefaction. SQS, however, better
tracks the true species pool size (12) by counting richness when
the combined number of occurrences (“shares”) of the resampled
taxa (“shareholders”) in a given time interval reaches a fixed,
required proportion of all occurrences in that time interval
(“shareholder quorum”). It therefore samples unevenly but more
fairly across intervals (12). The evenness of local collections in each
time bin (figure 2 in ref. 8) was derived from the number of genera
per 100 specimens in local collections (8). The median number of
genera was used to derive the slope of a log-log plot of genera
against specimens, from which the evenness measure [Hurlbert’s
probability of interspecific encounter (12)] derives (8).

The extinction rate μ is the exponential decay rate of a cohort
crossing the base of a time bin and continuing to its top, corrected
for the fact that members of this cohort may be present but not
sampled in the following, third, bin (10). The corresponding ori-
gination rate is λ (10). By concentrating on taxa actually sampled
within a time bin and correcting for variation in sampling prob-

ability, these measures are less susceptible to so-called edge
effects, such as the Signor–Lipps effect (which postulates that the
chance that the observed last occurrence is the true one is vanish-
ingly small, and thus extinction events are shifted backward in
time). A similar process occurs with the forward shifting of the
timing of the origination of taxa (10). The sample standardized
fossil record data were compiled for 48 intervals averaging 11Myr
from Early Cambrian through to Neogene (8–10).

To apply modeling approaches to correct traditional range-
through fossil data (i.e., those based on Sepkoski’s compendium
above) for sampling probability across geological stages, we used
data on the estimated area of marine sedimentary rock as a proxy
control variable, estimated from geological survey maps accord-
ing to ref. 13. Data were compiled into the same 11 Myr intervals
as for the above data. We used as control variables data from Eur-
ope alone, a well-sampled area that likely reflects the global fossil
sampling effort, Australia alone, as a continent with a different
sedimentary rock area profile (13), and the sum of Europe and
Australia. The rock record measures were used in four ways.
First, we detrended and transformed the measures (see below)
and included them as explanatory variables in linear models of
the richness of Sepkoski boundary crossers (see below). The
other three approaches used the rock record measures to predict
taxonomic richness in Sepkoski’s data under three sets of assump-
tions (13). In the first set of assumptions, richness was assumed to
be constant (Model I), while rock record varied. Richness and
rock area values were logged, ranked individually, and the linear
regression performed, giving an equation predicting richness
from rock area. The observed values of rock area were then used
to predict richness and the difference between the observed and
predicted richness values taken as the corrected dataset for Mod-
el I. These corrected data were then modified in two further mod-
els (II and III). In Model II, a linear regression of the corrected
data through all Phanerozoic time was made and the value of the
slope of the line was added to each time bin to reflect the pre-
dicted long-term increase or decrease. The initial value was given
by setting x to zero in the equation and this left the constant as the
starting value and then the diversity value would increase or de-
crease by the value of the slope of the line for each time interval.
This correction factor would be added to predicted diversity from
Model I. In Model III, a three-phase diversification model was
assumed by taking the residuals from three separate linear trends
of Model I corrected richness through time: A Cambrian to mid-
Devonian (Eifelian) rise, mid-Devonian (Giventian) to Triassic
(Rhaetian) fall, and Early Jurassic (Hettangian) to Pliocene rise
(13). Equations used were as given in figure 5B of ref. 14: Phase I:
y ¼ 0.017x − 0.152; Phase II: y ¼ −0.030x − 0.145; Phase III:
y ¼ −0.029x − 0.554.

It is preferable, for time series analysis, to have data for all
variables at equally spaced sampling intervals, and to achieve this
in a way that most closely matched previous analyses of tempera-
ture and the fossil record (15), all data were interpolated with
Akima interpolation splines (16) using the akima function R
(17) to extract values for 10 Myr intervals.

Second dataset.Data on eustatic sea level (18–20) and the marine
isotopic record of δ18O (2), δ13C (2), 87Sr∕86Sr (21), and δ34S
(22) came from the compilation of ref. 23 at 11-Myr intervals
corresponding closely to the time bins used in the sample stan-
dardized fossil record data mentioned above (9–11). The isotopic
records of δ13C, 87Sr∕86Sr, and δ34S came from a greater range
of sources to δ18O (mainly brachiopods and belemnites), includ-
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ing both biogenic (e.g., planktonic microfossils) and in the case of
δ34S, abiogenic material (micritic carbonates). Long-term sea
level changes are mostly inferred from stratigraphic sections of
cratons indicating flooding events. The chief merit in using iso-
topic environmental variables in macroevolutionary analyses is
that they are relatively unmodified datasets hence less prone to
error than, for example, direct estimates of temperature. A draw-
back is that changes in these variables probably reflect not just
changes in one feature of the environment but several (23), so
we have less confidence that an individual change reflects the
environmental feature we are interested in.

To these environmental variables we added all the sampled
standardized fossil data (IQS, SQS, evenness, λ and μ) from the
first dataset as well as the sea-water temperature estimates. To
ensure that all variables had equally spaced sampling intervals,
we used Akima splines again to interpolate values to the same
11-Myr intervals.

Analyses. Datasets were detrended using smoothing splines (24)
to remove long term trends while retaining shorter term variabil-
ity, using the function smooth.spline in R. The removal of long
term trends is essential to isolate the time scale of interest (fluc-
tuations over 10 s of Myr) and because inclusion of 100-Myr
trends would cause spurious correlations between variables. As
different datasets have different long term trends, a variety of dif-
ferent spline curvatures were applied to each dataset, set by the
degrees of freedom (d. f.) of the spline, where greater d. f. allow
the spline to track shorter term variability in the data (24). The
best detrender was assessed following examination of autocorre-
lation and spectral plots of the original series and the detrended
residuals to judge the efficiency with which the smoother was iso-
lating patterns at the time scale of interest and the sensitivity of
the residual variability to different detrenders. Typically a 5 d.f.
spline effectively removed long-term patterns while retaining
shorter term patterns (Table S1). The detrended series were ana-
lyzed using linear modeling (see below), so it is important to re-
duce bias in parameter estimates by ensuring that the detrended
series were roughly symmetrical around the mean. Where neces-
sary, a data transformation (typically log or square root) to re-
duce skew was applied to the original data prior to detrending
to normalize the residuals, and occasionally a transformation
was applied after detrending instead or as an additional step
(Table S1). All detrended data were then standardized to a mean
of zero and unit standard deviation. Standardizing the detrended
series assists interpretation of the time series plots and subse-
quent analytical coefficients because all variables use the
same scale.

Analyses included pairwise Pearson correlation, linear regres-
sion, and multiple regression using stepwise subtraction. For the
latter, model simplification was performed by stepwise removal
from a full model containing main effects (both datasets) and in-
teractions (first dataset only), using the step function in R. Step
removes parameters based on a comparison of Akaike Informa-
tion Criterion (AIC) values (25) of all possible models with one
less term, removing the term that leads to the greatest reduction
in AIC at each step. The AIC (25) is a measure of the goodness of
fit of a statistical model, describing the trade-off between model
accuracy and model complexity, designed to discourage over-
fitting. Low AIC values represent a favorable trade-off (better
accuracy for a given complexity).

Because the time series are serially auto-correlated, standard
statistical tables will generally overestimate significance because
they assume independence of the data. We therefore tested
significance (experiment-wise) through bootstrapping the data
to directly estimate confidence limits of the test statistics, using
the function boot in R. Rows of data (x, y pairs in a correlation)
are sampled with replacement from the true data to create a new
pseudo-dataset of the same size as the original. The statistical test
is applied and test statistic stored. This process is repeated many
times (typically 1,000) to produce a distribution of the test statis-
tic that illustrates the way the statistic may change with changing
the sample, within the observed limits of the data. This distribu-
tion can then be used to calculate confidence intervals on the test
statistic. We used the bias corrected and accelerated (bca) tech-
nique (26) for calculating confidence limits, which corrects for the
bias (difference between the observed mean and bootstrap mean)
and asymmetry of the bootstrap distribution.

Conducting many statistical tests increases the risk of making a
Type I error somewhere within the test family. Given the large
number of tests presented in this paper, readers should exercise
caution before rejecting any particular null hypothesis. However,
our overall conclusions are not substantially affected if any one
test is erroneous (27), nor is it likely that the majority are: In the
main text and Table S3 we report 42 hypothesis tests involving
temperature or a temperature proxy; 24 of them are significant,
>11 times the family-wise error rate of 2 at P < 0.05. In Table S3,
80 tests are reported, of which 25 are significant (i.e. >6.25 times
the family-wise error rate). At least two of the tests, involving
temperature in Table S3, are robust even to a strict Bonferroni
correction at P < 0.000625 (see Results). The majority of tests
were implemented to explore the robustness of our initial findings
to alternative assumptions, so consistent findings should make
them more robust, not less (28).
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Table S1. Transformations and detrenders applied to each variable prior to mean-standardizing

Dataset Variable Transformation Detrender spline (d.f.)

First dataset Generic richness (Sepkoski boundary crossers) Square root 5
Generic richness (IQS) Square root 5
Generic richness (SQS) loge 5
Evenness None 5
Origination rates (Sepkoski p) loge 5
Origination rates (λ) loge 5
Extinction rates (Sepkoski q) loge, residuals also loge 5
Extinction rates (μ) loge 5
Temperature None 5
CO2 Square root 5
Rock area (Europe) None 9
Rock area (Australia) Square root 9
Rock area (Summed) None 9
O-P (Europe, Mod. I) Square root 5
O-P (Australia, Mod. I) None 5
O-P (Summed, Mod. I) loge 7
O-P (Europe, Mod. II) None, residuals square rooted 5
O-P (Australia, Mod. II) None 5
O-P (Summed, Mod. II) loge, residuals logged 5
O-P (Europe, Mod. III) loge 3
O-P (Australia, Mod. III) None 5
O-P (Summed, Mod. III) None None

Second dataset Generic richness (IQS) loge, residuals also loge 5
Generic richness (SQS) loge 5
Evenness loge 5
Origination rates (λ) loge 5
Extinction rates (μ) loge 5
δ18O None 5
δ16C loge 5
87Sr∕86Sr None 5
δ34S loge 5
Eustatic sea level None 7
Temperature None 3

Table S2. Associations between traditional fossil record measures, or such measures that have been corrected for the rock
record, and other variables (after transformation and detrending)

Response variable Explanatory variables Method Coefficient Upper 95%CI Lower 95%CI

Generic richness
(Sepkoski boundary crossers)

Temperature, 10 Myr previously Correlation −0.275 −0.424 −0.017

Generic richness
(Sepkoski boundary crossers)

CO210 Myr previously Correlation −0.363 −0.502 −0.195

Generic richness
(Sepkoski boundary crossers)

Temperature, 10 Myr previously Linear Model −0.272 −0.487 −0.007

Generic richness
(Sepkoski boundary crossers)

CO2 Linear Model −0.351 −0.569 −0.176

Generic richness
(Sepkoski boundary crossers)

Temperature, European rock
area as co-variate

Linear Model −0.467 −0.757 −0.228

Generic richness
(Sepkoski boundary crossers)

Temperature, Australian rock
area as co-variate

Linear Model −0.447 −0.742 −0.170

Generic richness
(Sepkoski boundary crossers)

Temperature, summed rock
area as co-variate

Linear Model −0.471 −0.784 −0.221

O-P richness (Europe, Mod. I) Temperature Correlation −0.103 −0.281 +0.141
O-P richness (Australia, Mod. I) Temperature Correlation −0.265 −0.291 −0.057
O-P richness (summed, Mod. I) Temperature Correlation −0.283 −0.286 −0.029
O-P richness (Europe, Mod. II) Temperature Correlation −0.104 −0.223 +0.207
O-P richness (Australia, Mod. II) Temperature Correlation −0.194 −0.250 +0.053
O-P richness (summed, Mod. II) Temperature Correlation −0.098 −0.161 +0.191
O-P richness (Europe, Mod. III) Temperature Correlation −0.329 −0.596 −0.256
O-P richness (Australia, Mod. III) Temperature Correlation −0.158 −0.229 +0.129
O-P richness (summed, Mod. III) Temperature Correlation −0.190 −0.425 −0.008
O-P richness (Europe, Mod. I) Temperature, 10 Myr previously Correlation −0.329 −0.514 −0.163
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Response variable Explanatory variables Method Coefficient Upper 95%CI Lower 95%CI

O-P richness (Australia, Mod. I) Temperature, 10 Myr previously Correlation −0.229 −0.201 +0.017
O-P richness (summed, Mod. I) Temperature, 10 Myr previously Correlation −0.215 −0.232 +0.087
O-P richness (Europe, Mod. II) Temperature, 10 Myr previously Correlation −0.341 −0.454 −0.069
O-P richness (Australia, Mod. II) Temperature, 10 Myr previously Correlation −0.163 −0.254 +0.113
O-P richness (summed, Mod. II) Temperature, 10 Myr previously Correlation −0.303 −0.356 +0.015
O-P richness (Europe, Mod. III) Temperature, 10 Myr previously Correlation −0.401 −0.592 −0.284
O-P richness (Australia, Mod. III) Temperature, 10 Myr previously Correlation −0.134 −0.230 +0.152
O-P richness (summed, Mod. III) Temperature, 10 Ma previously Correlation −0.262 −0.445 −0.004
Origination rates (p) Temperature Correlation +0.262 +0.469 −0.029
Extinction rates (q) Temperature Linear Model +0.271 +0.550 −0.075

Table S3. Bivariate correlations (Pearson’s r, *P < 0.05 experiment-wise) between the standardized measures of marine invertebrate
diversity, origination and extinction, and biotic and abiotic isotopic predictors

Variable Standing richness (IQS) Stand ing richness (SQS) Even-ness Origination rate (λ) Extinction rate (μ)

Temperature 0.466* 0.252 0.414* 0.419* 0.361*
Previous temperature 0.221 0.007 0.285 0.220 0.472*
δ18O −0.296* −0.185 −0.360* −0.223 −0.139
Previous δ18O −0.245 −0.041 −0.520* −0.241 −0.219
δ13C +0.181 +0.192 −0.021 −0.096 +0.035
Previous δ13C +0.127 +0.388* −0.216 +0.030 +0.031
87Sr∕86Sr −0.165 +0.170 −0.408* +0.308* +0.095
Previous 87Sr∕86Sr −0.142 +0.111 −0.363* +0.008 −0.167
δ34S −0.029 −0.139 +0.014 +0.451* +0.275
Previous δ34S +0.059 +0.098 −0.163 +0.395* +0.203
Eustatic sea level +0.082 +0.079 +0.071 −0.185 −0.360*
Previous eustatic sea level +0.347* +0.162 +0.159 −0.088 +0.237
Previous extinction rate, μ −0.461* −0.362* −0.123 +0.354*
Previous standing richness (IQS) +0.304* +0.471* −0.074 +0.485*
Previous origination rate, λ +0.202 +0.199 +0.085 −0.007
Previous standing richness (SQS) +0.501* +0.145 −0.182 +0.157
Previous Evenness +0.356* +0.139 +0.278 +0.422*

IQS ¼ item quota subsampling; SQS ¼ shareholder quorum subsampling.
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