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Details of Density Function Theory (DFT) Calculations. The DFT cal-
culations were performed with the Vienna Ab initio Simulation
Package (VASP) (1, 2) using ultrasoft pseudopotentials (3, 4) for
electron-ion interactions and the Ceperley–Alder (5) local den-
sity approximation for the exchange-correlation functional.

To calculate the edge energy of graphene on metal, a graphene
ribbon was put on a two-layer metal slab with bottom layer fixed.
Around 15 Å vacuum space was kept in the direction perpendi-
cular to slab surface, and the distance between periodic images of
the ribbon was around 10 Å to avoid interactions between the
replicas. The structures were optimized using the conjugate gra-
dient algorithm until the forces on every atom were <0.01 eV∕Å.
The unit cell was orthogonal in all calculations. The width of zig-
zag (Z) ribbon was 5
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p
a, and the width of armchair (A) ribbon

was 5a. The reciprocal space was sampled using 5- and 9-point
Monkhorst–Pack k-point grids (6) along the edge for A and Z
edges, respectively. Increasing the ribbon width changed the edge
energy by less than 10 meV∕Å.

To calculate the energy of carbon addition, a short graphene
ribbon was put on double-layer metal slab with bottom layer
fixed. The nongrowing side of the ribbon was docked to a metal
step (an incomplete 3rd layer, see Fig. S1). The Brillouin zone
was sampled at the Γ point only. The unit cell for calculation is
shown in Fig. S2. The configurations featured in Fig. 3 of the
paper are listed in Figs. S3–S5.

Growth Velocity Anisotropy. Initial assumptions.Depending on edge
direction χ, site types—A, Z, and K (kink)—are present in dif-
ferent concentrations: sAðχÞ, sZðχÞ, and sKðχÞ, per graphene unit
cell length a0. Each A or kink site can accept two atoms. The first
is attached at a free energy cost (EA and EK , respectively). The
second one is assumed to attach instantaneously after the first
because its attachment reduces free energy. Z sites behave differ-
ently: Adding atoms to a Z edge creates two kinks having oppo-
site directions (removing two Z sites). Such kinks will be termed
extrinsic, so as to distinguish them from the intrinsic kinks [con-
centration, s0KðχÞ] prescribed by the edge orientation. Nucleation
of two kinks has a free energy barrier, EZ, and takes a certain
critical number of atoms, N �, and we may assume N � ¼ 1 for
simplicity. (The exact value of N � does not matter greatly be-
cause, as shown below, the main contribution to growth velocity
of Z edges comes from extrinsic kinks.)

The linear growth velocity of a straight edge can be expressed
as follows: v ¼ Adn

dt , where
dn
dt is the rate of atom attachment to the

edge per lattice constant a, andA is the specific area of one atom,
A ¼ 1

2
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a2. The total rate includes contributions from individual

sites, and has the form of dn∕dt ¼ ∑ sif ipiNi, where the factors
are site concentration per unit length, attempt frequency, accep-
tance probability, and the number of atoms per successful addi-
tion to a site of type i (A/Z/K).

Following the same logic as in constructing Fig. 2, the accep-
tance probabilities are easily obtained as pi

1−pi
¼ e−

Ei−Δμ
kT ; producing

a well-known result:

pi ¼
1

1þ e
Ei−Δμ
kT

≡ p
�
Ei − Δμ

kT

�
:

As for the attempt frequencies f i, these are complicated
objects factoring both the diffusion of carbon atoms on the
substrate, as well as the effective cross-section of attachment site.
In the simplest approximation, we may assume infinitely fast

(compared to growth) diffusion, and treat each vacant site at
the edge as a very narrow target that does not overlap with neigh-
boring sites and compete with them for atoms. Then,
fA ¼ fZ ¼ fK ¼ Fσ ¼ const, where F is the total flux of source
carbon atoms, and σ is the effective cross-section of a site
(σ ≪ 1∕si). We may use ðFσÞ−1 for time units, so that each active
site is visited on average once per unit time.

In principle, we should also include the Arrhenius activation
energies in the f is. Omitting them is justified if their differences
are small compared to respectiveEi differences. However, even if
they aren’t, the Brønsted–Evans–Polanyi–Semenov rule leads us
to expect them to approximately correlate with Eis, in which
case the effect of ignoring activation is effectively equivalent
to scaling the value of kT by some factor of less than 1. Because
in our case the growth velocity anisotropy increases vigorously
with decreasing temperature (see Figs. 4 and S6), such scaling
will not invalidate our main result about kinetically limited Z-
edged hexagonal shapes.

Concentration of kinks on pristine Z edge. For clarity, in this section
we assume that Δμ is small (compared to EZ −EK), and we may
replace pðEi

kTÞ ≈ e−Ei∕kT .
At a pristine Z edge. There are no intrinsic kinks, and Z site

concentration is sZð0Þ ¼ 1. What is the equilibrium stationary
concentration of (extrinsic) kinks, sK? The probability to create,
at the expense of two Z sites, a nucleus of a new atomic row is
e−EZ∕kT . Each of the two resulting kinks starts to propagate
(irreversibly) along the edge with a velocity of vK ¼ e−EK∕kT (lat-
tice constants per unit time).

Let d ¼ 2∕sKð0Þ be the average distance between two such nu-
clei (factor 2 is there because each nucleus makes two kinks).
Then, the average inverse time it takes two kinks from neighbor-
ing nuclei to meet and annihilate is τ−1 ¼ 2vK∕d ¼ vKsKð0Þ.
Each annihilation removes two kinks, but we only need count
one kink from every pair to avoid double counting, so the inten-
sity of kink removal is 2τ−1 sK ð0Þ

2
¼ vK × ½sKð0Þ�2. Then, the equa-

tion for equilibrium concentration of kinks on Z edge is

dsKð0Þ
dt

¼ 0 ¼ 2½sZð0Þ − sKð0Þ�e
−EZ
kT − ½sKð0Þ�2e

−EK
kT ;

sKð0Þ ¼ e
EK−EZ

kT

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2e

EZ−EK
kT

q
− 1

�
:

Kink concentration at arbitrary orientation. For an arbitrary edge
direction χ, the difference from a previous case is in the presence
of a background of intrinsic kinks, all propagating in one direc-
tion. These [concentration, s0KðχÞ] can additionally annihilate
with the counter-propagating extrinsic kinks. We can divide ex-
trinsic kinks in two classes: those propagating along with the in-
trinsic kinks (xþ) and the counterpropagating kinks (x−):
sxþK ¼ sx−K ¼ 1

2
sxK ¼ 1

2
ðsK − s0KÞ. The intensity of annihilation then

is 2 × 2vK × sx−K ðsxþK þ s0KÞ ¼ 2 × 2vK × 1
2
ðsK − s0KÞ × 1

2
ðsK þ s0KÞ.

The seemingly additional (comparing to the previous equation)
factor of 2 is there because now we are explicitly making a dis-
tinction between positive and negative kinks, thereby avoiding
double counting from the start. The resulting equation then
reads, as follows:
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dsKðχÞ
dt

¼ 0 ¼ 2½sZðχÞ − sKðχÞ�e
−EZ
kT − ½sKðχÞ − s0KðχÞ�

× ½sKðχÞ þ s0KðχÞ�e
−EK
kT :

Solving for sKðχÞ and combining the result with the geometri-
cal analysis of site concentrations (7), we can now write down the
final joint expression for orientation-dependent edge growth ve-
locity:

vðχÞ ∝ 2sAðχÞp
�
EA − Δμ

kT

�
þ 2sKðχÞp

�
EK − Δμ

kT

�

þ ðsZðχÞ − ½sKðχÞ − s0KðχÞ�Þp
�
EZ − Δμ

kT

�
;

p
�
Ei − Δμ

kT

�
¼ 1

1þ e
Ei−Δμ
kT

;

sAðχÞ ¼
�
0 χ < β
5ffiffi
3

p sin χ − cos χ χ ≥ β
;

sZðχÞ ¼ cos χ −
ffiffiffi
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p
sin χ;

sKðχÞ ¼ e
EK−EZ

kT

��
1þ 2sZðχÞe

EZ−EK
kT þ ðs0k ðχÞÞ2e

2ðEZ−EK Þ
kT

�1
2

− 1

�
;

s0KðχÞ ¼
� 2ffiffi

3
p sin χ χ < β

2 sin
�

π
6
− χ

�
χ ≥ β

; β ¼ arctan
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The pristine-edge solution is correctly recovered if we substi-
tute s0Zð0Þ ¼ 1, s0Kð0Þ ¼ 0. At intermediate chiral angles,
sKðχÞ ≈ s0KðχÞ, i.e., intrinsic kinks dominate the growth velocity.
At small values of μ, the Fermi function pi ≈ expð− Ei

kTÞ, as shown
in the main text.

Fig. S6 provides a better feel of how the character of vðχÞ
changes with increasing nonequilibrium (Δμ). The top row shows
polar plots at an artificially elevated temperature of 0.3 eV. Bot-
tom plots use a more realistic value of 0.1 eV and a logarithmic
scale, to accommodate for the strong anisotropy of vðχÞ. It can be
seen that as the chemical potential becomes sufficient to over-
come kink growth barrier, pK starts to saturate, and the gap be-
tween K and A growth velocity begins to shrink. At Δμ > EA, A
edges cease to be a local minimum of vðχÞ and become a global
maximum. At even greater Δμ values, vðχÞ will become more and
more isotropic. (In this regime, some of our assumptions may
break down, however it is not of great interest, as such strongly
nonequilibrium conditions are expected to produce many defects
and to be prone to formation of dendritic shapes.)

Movie S1 shows an animation illustrating the changes in the
nanoreactor diagram and the corresponding kinetic Wulff con-
struction as μ is varied.
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Fig. S1. Analogy between graphene edge growth and step-flow lateral growth of crystals in the canonical Burton—Cabrera—Frank representation.
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Fig. S2. Supercells used for modeling. (Left to Right) A edge, Z edge, and kink growth. Metal atoms are shown as balls with color representing depth. Orange
sticks represent graphene. Green lines indicate the periodic box.

Fig. S3. Possible atomistic structures during A edge growth, with their respective values (electronvolt) of last atom’s binding energy ϵ (where applicable) and
formation free energy ΔG (shown in boldface).
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Fig. S4. Possible atomistic structures during Z edge growth, with their respective values (electronvolt) of last atom’s binding energy ϵ (where applicable) and
formation free energy ΔG (shown in boldface).

Fig. S5. Possible atomistic structures during kink growth, with their respective values (electronvolt) of last atom’s binding energy ϵ (where applicable) and
formation free energy ΔG (shown in boldface). (Top) Normal kink propagation is a cycle comprised of just two stages. (Bottom) formation of a (5–7) defect
during kink propagation.
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Fig. S6. Kinetic Wulff construction for graphene growth on Ni as a function of chemical potential. Each axis tick in the bottom plots corresponds to a factor-
of-10 difference.

Movie S1. Animation illustrating the changes in the nanoreactor diagram and the corresponding kinetic Wulff construction as the chemical potential
is varied.

Movie S1(GIF)

Artyukhov et al. www.pnas.org/cgi/doi/10.1073/pnas.1207519109 5 of 5

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1207519109/-/DCSupplemental/SM01.gif
http://www.pnas.org/cgi/doi/10.1073/pnas.1207519109

