Tricolor Emission of a Fluorescent Heteroditopic Ligand over a Concentration Gradient of Zinc(II) Ions

Supporting Information

Kesavapillai Sreenath, Ronald J. Clark, and Lei Zhu*

Department of Chemistry and Biochemistry Florida State University, 95 Chieftan Way Tallahassee, Florida 32306-4390

lzhu@chem.fsu.edu

No.	Title	Page No
I	Additional Figures	S4-S8
	Figure S1 . Visual appearance of 2 (10 μ M) in CH ₃ CN upon increasing Zn(ClO ₄) ₂ concentration from 1 nM to 1 M under ambient light, and upon illumination using a handheld UV lamp.	S4
	Figure S2 . Absorbance increase (A/A ₀ at 568 nm) of 2 (10 μ M), with increasing [Zn(ClO ₄) ₂] and fitting curve of A/A ₀ vs [Zn ²⁺] based on a 1:1 binding isotherm equation.	S4
	Figure S3 . IR spectra of 3 (blue) and $[Zn(3)](ClO_4)_2$.	S 5
	Figure S4 . Effect of addition of $Zn(ClO_4)_2$ (0-60 µM) on absorption spectrum of the mixture of 1 (3.0 µM) and 2 (3.0 µM) in CH ₃ CN, and corresponding changes of the emission spectrum.	S 5
	Figure S5 . Effect of addition of $Pb(ClO_4)_2$ (0-32 µM) on the absorption spectrum of compound 4 (3.1 µM) in CH ₃ CN, and corresponding changes of the emission spectrum.	S6
	Figure S6 . Effect of addition of $Fe(ClO_4)_2$ (0-32 µM) on the absorption spectrum of compound 4 (3.1 µM) in CH ₃ CN, and corresponding changes of the emission spectrum.	S 6
	Figure S7 . Variation of fluorescence intensity of 2 at 588 nm <i>vs</i> . pH, and the fitting curve based on a modified Henderson–Hasselbalch equation.	S7
	Figure S8 . Visual appearance of 5 (10 μ M) in CH ₃ CN upon increasing Zn(ClO ₄) ₂ concentration from 1 nM to 0.1 M under ambient light, and upon illumination using a handheld UV lamp.	S7
	Figure S9 . Absorbance increase (A/A ₀ at 584 nm) of 5 (10 μ M) with increasing [Zn(ClO ₄) ₂], and the fitting curve of A/A ₀ vs [Zn ²⁺] based on	S8

a 1:1 binding isotherm equation.

II

III

Figure S10. Variation of fluorescence intensity of 5 at 610 nm vs. pH.		
F Z	Figure S11. Fluorescence decay profiles of 5 and 6 in the presence of $Zn(ClO_4)_2$ monitored in CH ₃ CN.	S9
ł	Figure S12. Cyclic voltammograms.	S9
H a b	Figure S13. Effect of addition of $ZnCl_2$ (0-98 μ M) on the absorption and emission spectra of compound 6 (5 μ M) in a 1:1 CH ₃ CN/HEPES ouffer (50 mM HEPES, 50 mM NaCl, pH 7.2) solution.	S10
]	Fable S1. Electrochemical data.	S10
ł	References	S10
(Copies of ¹ H and ¹³ C NMR Spectra	S11-S22
1	H and ¹³ C NMR of 2-amino-6[(trimethylsilyl)ethynyl]pyridine	S11
1	H and ¹³ C NMR of 2-amino-6-ethynylpyridine	S12
1	H and ¹³ C NMR of compound 7	S13
1	H and 13 C NMR of compound 2	S14
1	H and 13 C NMR of compound 3	S15
1	H and ¹³ C NMR of compound 8	S16
1	H and ¹³ C NMR of compound 10	S17
1	H and ¹³ C NMR of compound 11	S18
1	H and ¹³ C NMR of compound 4	S19
1	H and ¹³ C NMR of compound 12	S20
1	H and ¹³ C NMR of compound 5	S21
1	H and ¹³ C NMR of compound 6	S22

I. Additional Figures

Figure S1. Visual appearance of **2** (10 μ M) in CH₃CN upon increasing Zn(ClO₄)₂ concentration from 1 nM to 1 M (left to right) under (a) ambient light, and (b) upon illumination using a handheld UV lamp ($\lambda_{ex} = 365$ nm).

Figure S2. Absorbance increase (A/A₀ at 568 nm) of **2** (10 μ M), with increasing [Zn(ClO₄)₂]. The brown line is the fitting curve of A/A₀ vs [Zn²⁺] based on a 1:1 binding isotherm equation.¹ Dissociation constant of the putative 1:1 (ligand/Zn²⁺) complex K_d = 0.1 mM.

Figure S3. IR spectra of 3 (blue) and [Zn(3)](ClO₄)₂.

Figure S4. (a) Effect of addition of $Zn(ClO_4)_2$ (0-60 µM) on the absorption spectrum of the mixture of **1** (3.0 µM) and **2** (3.0 µM) in CH₃CN. (b) Corresponding changes of the emission spectrum ($\lambda_{ex} = 370$ nm).

Figure S5. (a) Effect of addition of Pb(ClO₄)₂ (0-32 μ M) on the absorption spectrum of compound **4** (3.1 μ M) in CH₃CN. (b) Corresponding changes of the emission spectrum ($\lambda_{ex} = 370$ nm).

Figure S6. (a) Effect of addition of $Fe(ClO_4)_2$ (0-32 µM) on the absorption spectrum of compound **4** (3.1 µM) in CH₃CN. (b) Corresponding changes of the emission spectrum ($\lambda_{ex} = 370$ nm).

Figure S7. Variation of fluorescence intensity of **2** at 588 nm *vs*. pH ($\lambda_{ex} = 570$ nm). The purple line is the fitting curve based on a modified Henderson–Hasselbalch equation.² pK_a ~ 2.8.

Figure S8. Visual appearance of **5** (10 μ M) in CH₃CN upon increasing Zn(ClO₄)₂ concentration from 1 nM to 0.1 M (right to left) under (a) ambient light, and (b) upon illumination using a handheld UV lamp ($\lambda_{ex} = 365$ nm).

Figure S9. Absorbance increase (A/A₀ at 584 nm) of **5** (10 μ M) with increasing [Zn(ClO₄)₂]. The red line is the fitting curve of A/A₀ vs [Zn²⁺] based on a 1:1 binding isotherm equation.¹ Dissociation constant of the putative 1:1 complex (ligand/Zn²⁺) K_d = 20 μ M.

Figure S10. Variation of fluorescence intensity of **5** at 610 nm *vs.* pH ($\lambda_{ex} = 570$ nm). Inset shows the emission spectra of **5** at various pH (red line at pH = 2.07 and blue line at pH = 9.77). pK_a = 5.0.

Figure S11. Fluorescence decay profiles monitored at 520 nm (\blacktriangle) and 610 nm (\Box) by exciting samples using a 370 nm nanoLED excitation source, (a) IRF (\bullet), (b) the monozinc complex of **6** (\bigstar , blue), (c) **6** in the presence of 10 equiv of Zn(ClO₄)₂ (\Box , wine). Inset: (d) **5** in the presence of 10 equiv of Zn(ClO₄)₂ (\Box , wine). Inset: (d) **5** in the presence of 10 equiv of Zn(ClO₄)₂ (\Box , red) in CH₃CN excited at 560 nm.

Figure S12. Cyclic voltammograms of **1** (green), $[Zn(1)]^{2+}$ (violet), **2** (red), **4** (blue), and $[Zn(4)]^{2+}$ (brown) in 0.1 M Bu₄NPF₆/CH₃CN at a sweep rate of 100 mV/s.

Figure S13. (a) Effect of addition of ZnCl₂ (0-98 μ M) on the absorption spectrum of compound **6** (5 μ M) in a 1:1 CH₃CN/HEPES buffer (50 mM HEPES, 50 mM NaCl, pH 7.2) solution. (b) Corresponding changes of the emission spectrum ($\lambda_{ex} = 370$ nm).

Compound	$^{a}E_{ox}$, V vs Fc ⁺ /Fc	E_{red} , V vs Fc ⁺ /Fc
1	0.80	-
$^{b}[Zn(1)]^{2+}$	0.96	-1.73
2	0.47	-
4	0.47	-
$^{b}[Zn(4)]^{2+}$	0.48	-1.77

Table S1. Electrochemical data of $\mathbf{1}$, $[Zn(\mathbf{1})]^{2^+}$, $\mathbf{2}$, $\mathbf{4}$, and $[Zn(\mathbf{4})]^{2^+}$.

^a Lowest oxidation potential, ^b of monozinc complex.

II. References

- (1) Zhu, L.; Zhong, Z.; Anslyn, E. V. J. Am. Chem. Soc. 2005, 127, 4260-4269.
- (2) Kuang, G.-C.; Allen, J. R.; Baird, M. A.; Nguyen, B. T.; Zhang, L.; Morgan, T. J. Jr.; Levenson, C. W.; Davidson, M. W.; Zhu, L. *Inorg. Chem.* 2011, 50, 10493-10504.

III. Copies of ¹H and ¹³C NMR of Compounds

¹H NMR (300 MHz, CDCl₃) of 2-amino-6[(trimethylsilyl)ethynyl]pyridine

¹³C NMR (125 MHz, CDCl₃) of 2-amino-6[(trimethylsilyl)ethynyl]pyridine

¹³C NMR (125 MHz, CDCl₃) of 2-amino-6-ethynylpyridine

^{13}C NMR (125 MHz, CDCl_3) of compound 7

^1H NMR (300 MHz, CDCl₃) of compound $\boldsymbol{2}$

^{13}C NMR (125 MHz, CDCl₃) of compound **2**

¹³C NMR (125 MHz, CDCl₃) of compound **3**

¹³C NMR (125 MHz, CDCl₃) of compound **8**

S16

¹H NMR (300 MHz, CDCl₃) of compound **10**

¹³C NMR (125 MHz, CDCl₃) of compound **10**

¹H NMR (300 MHz, CDCl₃) of compound **11**

 ^{13}C NMR (125 MHz, CDCl₃) of compound 11

¹³C NMR (125 MHz, CDCl₃) of compound **4**

 ^{13}C NMR (125 MHz, CDCl₃) of compound 12

^1H NMR (300 MHz, CDCl₃) of compound $\boldsymbol{5}$

¹³C NMR (125 MHz, CDCl₃) of compound **5**

¹³C NMR (125 MHz, CDCl₃) of compound **6**

