Supplemental Information

The N-terminus of the human RecQL4 helicase is a homeodomain-like DNA interaction motif

Oliver Ohlenschläger¹⁺, Anja Kuhnert³⁺, Annerose Schneider², Sebastian Haumann¹, Peter Bellstedt¹, Heidi Keller², Hans-Peter Saluz³, Peter Hortschansky⁴, Frank Hänel³, Frank Grosse², Matthias Görlach¹ and Helmut Pospiech^{2,*}

Research groups ¹Biomolecular NMR Spectroscopy and ²Biochemistry, Leibniz Institute for Age Research – Fritz Lipmann Institute, Beutenbergstr. 11,

D–07745 Jena, Germany, ³Dept. of Cell and Molecular Biology, and ⁴Dept. Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstr. 11a, D–07745 Jena, Germany

Supplemental Figures

Supplemental Figure S1: Domain organisation of yeast Sld2 and human RecQL4, and conservation of the amino acid sequence in the N-terminal domain of the RecQL4/Sld2 protein family. Genebank accession numbers are given on the right. Abbreviations are as follows: Homsa, *Homo sapiens*; Xenla, *Xenopus laevis*; Danre, *Danio rerio*; Drome, *Drosophila melanogaster*; Hydvu, *Hydra vulgaris*; Sacce, *Saccharomyces cerevisiae*; Copci, *Coprinopsis cinerea*; Ustma, *Ustilago maydis*; Ostta, *Ostreococcus tauri*; Phyin, *Phytophthora infestans*; Karbr, *Karenia brevis*; Monbr, *Monosiga brevicollis*.

Supplemental Figure S2: Purification and biophysical analysis of RecQL4 N54. A, Elution profile of RecQL4 N54 from a MonoS column (top). RecQL4 N54 was purified as described in Materials and Methods. Elution was performed by a linear gradient of 0 - 2 M NaCl in 20 mM potassium phosphate, pH 7.4, 1 mM EDTA, 1 mM DTT with an ÄKTA system. **B**, Equal volumes of the MonoS peak fractions were analysed by SDS-PAGE following Coomassie brilliant blue staining; C, Analytical gel filtration. A sample of the pooled RecQL4 N54 MonoS peak was applied to an analytical G3000PWXL gel filtration column developed with 10 mM potassium phosphate, pH 7.4. The position of the molecular weight markers (thyroglobulin, 669 kDa; alcohol dehydrogenase, 150 kDa; carbonic anhydrase, 29 kDa; cytochrom c, 12.4 kDa; aprotinin, 6.5 kDa) analysed in a separate experiment are indicated (grey line); **D**, Far-UV CD spectrum of RecQL4 N54 in 10 mM potassium phosphate, pH 7.4. The grey line represents the corresponding CD spectrum after the temperature scan, indicating the thermal denaturation is largely reversible. E, CD spectroscopic melting profile of RecQL4 N54 in 10 mM potassium phosphate. The protein was subjected to increasing temperature in order to evaluate its thermal stability. Amount of secondary structure was monitored as a function of the reduction in ellipticity. The molar ellipticity at 222 nm as function of temperature is shown.

Supplemental Figure S3: [¹H,¹⁵N]–HSQC spectrum of RecQL4_N54. Backbone amide resonance assignments are indicated as one–letter code. Shaded circles indicate cross peaks observable only at lower thresholds. *Of note*: the first native RecQL4 residue is M3. The numbering of the a.a. positions in RecQL4_N54 starts with two non-native residues derived from the expression construct to maintain consistency with the related PDB (2KMU) and BMRB (16544) data base entries.

Supplemental Figure S4. RecQL4_N54 binds DNA without sequence specificity. dsDNA fragments covering different parts of 232 bp genomic DNA derived from the human replication origin at the LB2 locus were analysed by EMSA. All fragments assessed were shifted with similar efficiency by RecQL4_N54. Binding reactions were performed with RecQL4_N54 (2 μ g / ~300 nmol) and 200 ng of each DNA fragment. Details for the DNA fragments are provided in Supplemental Table S1. The DNA binding buffer was supplemented with 100 mM KCl where indicated.

Supplemental Figure S5. RecQL4_N54 binds branched DNA substrates. Binding of RecQL4_N54 to various DNA substrates as schematically depicted on top was assessed by EMSA. Binding reactions were performed with RecQL4_N54 ($2 \mu g / \sim 300 \text{ nmol}$) and 30 nmol of each DNA fragment. Details for the DNA fragments are provided in Supplemental Table S3. The DNA binding buffer was supplemented with 100 mM KCl where indicated.

Supplemental Figure S6. Real-time binding analysis of RecQL4-N54 to Y-shaped (Y), double stranded (ds) and single stranded (ss) DNA, respectively. Fits of the surface plasmon resonance equilibrium responses for DNA binding of RecQL4_N54 using HEPES buffer containing 150 mM NaCl.

Supplemental Tables

Supplemental	Table S1.	Primers u	used to am	plify	defined	human	origins	of DNA	replication.
							<u> </u>		

GenBank			Primer					
accession			length	Tm				Product
no. / primer	Sequence (5' to 3')		(bp)	(°C)	Ν	Map position (bp)		length (bp)
	Connelly, M. A., H. Zhang, J. Kieleczawa, and C. W. Anderson. 1998. The promoters for							
	human DNA-PKcs (PRKDC) and MCM4: divergently transcribed genes located at							
U63630a	chromosome 8 band q11. Genomics 47:71–83.							
MCM4upr-F	AATTAAGGACGGGAGGTGGT		20	59.69		13167 - 13408		242
MCM4upr-R	TTGGGTGGCTACTTGGTGTT		20	60.41				
	AATTAAGGAC GGGAGGTGGT	GGGG	ATGGTC	TCATTATG	TT	GCCCAGACTG G	TC	ICGAACT
	CCTGCGATCC CCCCGCCTCA (GCTT	CCTAAA	GTGTTGGG	AC	TGCAGGCGGG C	AT(CACCGCC
			TCGAGG	AACAAAC'I''	ТG	GAACTCTTGA C	CT7 ma	AGGCCCC
	AZ	I.GG.I.	ATTIAT	TTAGCCAA	GT	CCAACACCAA G	TA	JULALUL
MCM4in1-F	ATCTCGCCTAATCCCACCAGTAC	CC	24	65 57				
MCM4in2-R	CATATTCACTACTAGACCCTCC	GG	24	60.26		14364 – 14656		293
	ATCTCGCCTA ATCCCACCAG	FACC	TTTTCC	AAACCCCT	СТ	ATTTGCCGTT C	CT/	ACTTTGA
	GAAAAATTGA AGAAATGTAA	ГТGА	AGTCAT	GTTCTTTT	AA	CTCTTTAGCA A	TG	CCTGGGT
	GGGAACTTTT TCCCCTTTGT A	AGTA	AAAGTG	CCTCTTTT	ТА	GCATTTTAAA T	AT	ГСАААТА
	CTTAATTATG TGGATCTCCT (GTAT	TCCTTC	TTTAAAAC	AC	GAGTATGCAG A	CC	TTGATGT
	TGTGCCCTAT TAAAAGGTGA (GATT	TTCTTC	CGGAGGGT	СТ .	AGTAGTGAAT A	ΤG	
	Biamonti, G., M. Giacca, G. Per	rini, (G. Contre	as, L. Zentili	in, F	F. Weighardt, M.	Gu	erra, G.
	Della Valle, S. Saccone, S. Riva, et al. 1992. The gene for a novel human lamin maps at a highly							
	transcribed locus of chromosome	19 w	hich replic	eates at the or	nset	of S phase. Mol. C	Cell	. Biol.
M94363b	12: 3499–3506.	. ~	.		1			
LB2-F	GGCIGGCAIGGACIIIICAIIICA	AG TG	24	67.97		3839 – 4070		232
LB2-R	GIGGAGGGAICI IIICI IAGACA	IC .	24	59.51			<u>а</u> ш.	
		L'CAG D'D'C'D	AGATTC	CATTA	AG. Ca	CTCCAAGCATG C	C.I.7 11 Marine	AGCGIGI
		ււց։ րարար	ACCTTC	TCCCTCTC	GA AC	TTTATTCCTC A		CAACCT
	CGAGCCGGGC CTCTGCCCTA	ATGA	AGCGGA	TGTCTAAG	AG AA	AGATCCCTCC A	C	JGAAGCI
LB2C1-F	GTTAACAGTCAGGCGCATGGGCC	2	23	70 72				
LB2C1-R	CCATCAGGGTCACCTCTGGTTC	1	23	68.27		1 – 240		240
	GTTAACAGTC AGGCGCATGG (GCCA	TGGAGC	CTCCTGGG	TG	TCAGATCCCA G	TT	CAGCCCC
	TGCTTGCCAA GAGCCCTTGG (CCTC	TGTGAA	CCCTGGTC	ΤС	TTCTTGTGTA T	CC	IGGGGAC
	CATCACCCTG GATAAGCCTG (CGTC	GGGCTG	GAAGGACT	GA .	ACGCCCAGGG C	AT	IGAAGGG
	GCTTTGTGGT AGGGGCCACT (GGCT	GGCCCA	CGTCCCTG	GA	ACCAGAGGTG A	CC	CTGATGG
	Keller C, Ladenburger EM, Kr	emer	M, Knipj	pers R (2002	2) . Tl	he origin recogniti	on	complex
AL035652	AL035652 marks a replication origin in the human TOP1 gene promoter. J. Biol. Chem. 277:31430-40.							
TopProm-F	CACTGCCTAGCAGAGGGGCTG		21	66.74		12461 - 12749		295
TopProm-R	GCAGTTGTGTAACAGCCTAAGT	ГСG	25	63.39				200
	CACTGCCTAG CAGAGGGGCT (GGGG	TTCCGA	GAAAAAGC	GT	CTGGAGAGGA A	GG	GGAGGCT
	GCTTGGGGTG GGACGCCGTG (GGAG	GAGTCG	GCTCCTTA	TG	CAAATCACAG C	GGI	AGCGCGC
		JCGA	TGCAAA	GACAGGTC	CG	TCTGGCGAAC A	GCO	GAGGGGG
	CGGGGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG		CAAATC	GCGCTGAC	G.T.	CUCCUGACGTG T	TG.	
TopM1 E			25	54 03	GG	CIGIIACACA A		30
	САСААТСТИТАТАТССИ	AG	23	56.86		17370 - 17550		181
			Հ	GCTGTGAG	L GT	աստաստանություն ա	GC	րաշատոտ
	CAGTGCATGT GTGGGGGTGGG	JUAA Gage	TGCAAA	AAAATGTT	ТĢ	ССТТСТААТА Т	ACI	часттта Ассттта
	TTGTATATTA ATTATATAGT A	AACA	GTTGTC	CCTGCTGC	TA	ATGGTATGGA A	AA'	IGATICI
1								

Supplemental Table S2. Primers/oligonucleotides used to produce fragments covering portions of the *LB2* origin of DNA replication region.

Fragmant	Drimor		Primer length	Tm	Map position	Product length	
Fragment			(bp) 24	<u>(C)</u> 68	(qq)	(DP) 232	
LB2	LB2-T	GTGGAGGGATCTTTCTTAGACATC	24	60	3839 – 4070		
LB2	LB2-F	2-F GGCTGGCATGGACTTTCATTTCAG		68	3839 –		
1-113	LB2-R113	AAAAAGTTTCCAGTCATAAAATGTATATTACAA	33	59	3951	113	
LB2_	LB2-F45	TGCATGCCTAGCGTGTTCTT	20	58	3884 –	111	
45-155	LB2-R155 AGGCAGAACCTAAAATCAAAATGTTTA		27	59	3995	111	
LB2_	LB2-F132	ACATTTTGATTTTAGGTTCTGCCTCT	25	59	3970 –	101	
132-232	LB2-R	GTGGAGGGATCTTTCTTAGACATC	24	60	4070		
LB2_	LB2-F	GGCTGGCATGGACTTTCATTTCAG	24	68	3839 –	48	
1-48	LB2-R48	TGCATCTTCTTAAAAACCGAATCTCT	ATCTTCTTAAAAACCGAATCTCT 26 60		3886	P	
LB2_ 45-113	LB2-F45	TGCATGCCTAGCGTGTTCTT	20	58	3884 –	69	
	LB2-R113	AAAAAGTTTCCAGTCATAAAATGTATATTACAA	33	59	3951		
LB2_	LB2-F126	B2-F126 CAATAAACATTTTGATTTTAGGTTCTGC		59	3965 -	50	
126-175	LB2-R175	CCCCTCAGGAATAAACTCAGAGG	23	59	4053		
LB2_	LB2-F152	GCCTCTGAGTTTATTCCTGAGGG	23	59	3991-	56	
152-207	LB2-R207	GCTTCATTAGGGCAGAGGCC	20	60	4045		
LB2_	LB2-F	.B2-F GGCTGGCATGGACTTTCATTTCAG		68	3839 –	24	
1-24	LB2-R24	CTGAAATGAAAGTCCATGCCAGCC	24	63	3862	4 7	
LB2_	LB2-F	LB2-F GGCTGGCATGGACTTTCATTTCAG		68	na	na	
1-24Y	LB2-R24Y	GACTTTACAAAGTCCATGCCAGCC	24	63	n.a.	a.	
LB2_ 13-36	LB2-F13	2-F13 CTTTCATTTCAGAGATTCGGTTTT		56	3851 –	24	
	LB2-R36	AAAACCGAATCTCTGAAATGAAAG	24	56 3874		27	
LB2_	LB2-F23	AGAGATTCGGTTTTTAAGAAGATGCA	26	68	3861 –	26	
23-48	LB2-R48 TGCATCTTCTTAAAAACCGAATCTCT		26	59 3886		20	

^aMap positions are indicated according to: **Biamonti, G., M. Giacca, G. Perini, G. Contreas, L. Zentilin, F. Weighardt, M. Guerra, G. Della Valle, S. Saccone, S. Riva, et al.** 1992. The gene for a novel human lamin maps at a highly transcribed locus of chromosome 19 which replicates at the onset of S phase. Mol. Cell. Biol. **12**:3499–3506.

Construct	Sequence		Structure			
	5'-GCTTGCATGCCTGCAGGCCAGCCTCAATCTCATC		3'-overhang			
M2-M1						
	3'-CGAACGTACGGACGTCC					
	5'-CTACTCTAACTCCGACCGCTTGCATGCCTGCAGG		5'-overhang			
M3-M1						
	3' - CGAACGTACGGACGTCC					
	5'-CTACTCTAACTCCGACCGCTTGCATGCCTGCAGG		dsDNA			
M3-S3						
	3' -GATGAGATTGAGGCTGGCGAACGTACGGACGTCC		V abarad DNA			
			r-shaped DNA			
1012-1014						
	3' - CGAACGTACGGACGTCC					
	AGCTGAGATCTCTCCTA					
	5'-ATCCTCTCTAGAGTCAA		Yshaped DNA			
S4-M3	GGTCGGAGTTAGAGTAG					
	CCAGCCTCAATCTCATC					
	3'-GGACGTCCGTACGTTCG					
	5'-ATCCTCTCTAGAGTCAA		FLAP			
M1-S4-M3						
	5' - CCTGCAGGCATGCAAGC GGTCGGAGTTAGAGTAG					
	5'-GTACCCGGGGATCCTCTAGAGT	GGCACTGGCCGTCGTTTTACAAC				
M5-M6						
	3'-CATGGGCCCCTAGGAGATCTCA	CCGTGACCGGCAGCAAAATGTTG				
	CTACTCTAACTCCGACCCTT	TT				
	3'- CTACTCTAACTCCGACC		D-loop			
	CGACCTGCAGGCATGCAAGC	TT				
M5-M6-M2	5'-GTACCCGGGGATCCTCTAGAGT	GGCACTGGCCGTCGTTTTACAAC				
	GGACGTCCGTACGTTCG		\rightarrow			
	3' -CATGGGCCCCTAGGAGATCTCA	CCGTGACCGGCAGCAAAATGTTG				
	CTACTCTAACTCCGACCCTT.	TT				

Supplemental Table S3. Oligonucleotides used to assemble the DNA substrates utilized in Supplemental Fig. S5.

DNA	MW DNA (Da)	DNA bound (RU)	R _{max} calc.* (RU)	R _{max} (RU)	% of R_{max}	K _D (μM)
LB2-24 Y	15061	45.0	20.4	46.3	227.0	166.5 ± 21
LB2-24 ds	15110	43.7	19.8	27.1	136.9	162.8 ± 14
LB2-24 ss	7780	23.4	20.6	25.1	121.8	130.6 ± 12
1 20 1 604						

Supplemental Table S4. SPR equilibrium data for DNA binding of RecQL4 N54 (HBS-EP150)

* R_{max} calc. = 6836 Da (MW RecQL4-N54) / Mw DNA x DNA bound

Supplemental Methods

CD spectroscopy. CD spectroscopy was carried out at 20°C using a Jasco J–715 spectropolarimeter with a Jasco PFD–3505 temperature controller. Far–UV spectra of the protein $(135 \ \mu g/ml - 20 \ \mu M)$ were recorded from 190 to 250 nm in 10 mM potassium phosphate, pH 7.5, with the following settings: response time 1 s; speed 50 nm/min; path length 1 mm; band width 1 nm; average of 5 scans. The mean molar ellipticity was calculated with the Jasco software. Protein melting was monitored simultaneously at 192, 208 and 222 nm in steps of 1°C from 20 to 98°C with the following instrument settings: temperature increase 30°C/h; response time 16 s; and path length 1 mm. Reversibility of the unfolding was assessed from a far-UV spectrum as described above recorded after the temperature scan.

In silico analyses. Homologues of RecQL4 N54 were retrieved from the NCBI gene bank using PSI-BLAST (65) and the amino acid of the amino-terminal region of human RecQL4 as a bait. Additional sequences were retrieved from the Genebank EST collection using the TBLASTN program and human RecQL4 N54 or its homologues as baits. Multiple sequence alignment was generated from the PSI-BLAST output and managed with the GENEDOC sequence editor (66). Secondary structure prediction data were generated at the PredictProtein server (67). Regions of disorder were predicted using the DISMETA server (wwwnmr.cabm.rutgers.edu/bioinformatics/disorder). Structural homologues of RecQL4 N54 were identified with the DALI server (www.ebi.ac.uk/dali) (32) using the structural model 1 as a bait.

Supplemental References

- 65. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res*, **25**, 3389-3402.
- 66. Nicholas, K.B., Nicholas, H.B., Jr. and Deerfield, D.W., 2nd. (1997) GeneDoc: Analysis and visualization of genetic variation. *EMBNEW News*, **4**.
- 67. Rost, B., Yachdav, G. and Liu, J. (2004) The PredictProtein server. *Nucleic Acids Res*, **32**, W321-326.