Supplementary Information to:

Spacer-length dependence of programmed -1 or -2 ribosomal frameshifting on a U_6A heptamer supports a role for mRNA tension in frameshifting

Zhaoru Lin, Robert J. C. Gilbert* and Ian Brierley[†].

Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom. *Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom

Supplementary Figure S1

Further characterisation of AON-mediated frameshifting

(A). The two bases immediately 5' of the U_6A stretch within pFSHIV-AON stopAll were changed as indicated. Also shown are the sequences of four AONs complementary to the mRNA beginning three bases downstream of the U_6A stretch.

(B). In vitro translation of pFSHIV-AON stopAll variants. The wild-type Nco-I-derived mRNA (wt) and three sequence variants (pAON AG, CA, CG) were translated in RRL in the absence (H₂0) or presence of 10 μ M 25MO, 25OMe, 15OMe or 15RNA. Products were analysed and quantified as in the legend to Figure 1. The frameshifting efficiency measured for each signal (to the nearest integer) is indicated below the relevant lanes (%FS) and takes

into account the number of methionines present in each product (nFS, 19; -1 FS, 10; -2 FS, 11).

Supplementary Figure S2

The effect of slippery sequence -pseudoknot (PK) spacing on -1 and -2 frameshifting on U_6A . (A). The spacer of pFSHIV-SRV, which contains the stimulatory RNA pseudoknot of the SRV-1 *gag/pro* signal, was changed from three to nine nucleotides as indicated. A diagrammatic representation of potential translation products of pFSHIV-SRV mRNAs and predicted molecular masses is also shown. The sizes of the encoded frameshift products were normalised by appropriate deletion of bases downstream of the PK.

(B). Messenger RNAs derived from Nco I-cut pFSHIV-SRV spacer variants were translated in RRL and products analysed and quantified as in the legend to Figure 3. The numbers above each gel represent the spacer length. The frameshifting efficiency measured for each signal (to the nearest integer) is indicated below the relevant lanes (-1%FS; -2%FS) and takes into account the number of methionines present in each product (nFS, 10; -1 FS, 10; -2 FS, 11). The asterisk indicates that the line also marks the position of the -1 FS product of pFS cass 5 control mRNA (IBV PK).

Supplementary Figure S3

Mass spectrometry traces.

(A). MALDI mass fingerprint of tryptic digest of -2FS-eGFP-N2 fusion protein.

(B). Peptide coverage of -2FS-eGFP-N2 fusion protein.

(C). Spectrum of the observed γ - and β -ions identified by MS/MS analysis resulting from the fragmentation of the doubly charged 2030pk peptide (panel B).

(D). Table of the observed γ - and β -ions identified by the MS/MS analysis.

Figure S1

Α

- 3' ACCCUAGGAAGUUGA 5' 15RNA
- 3' ACCCUAGGAAGUUGA 5' 150Me
- 3' ACCCUAGGAAGUUGAAGGGACUCGA 5' 250Me
- 3' ACCCTAGGAAGTTGAAGGGACTCGA 5' 25MO

pFSHIV-AON stopAll (wt) GAUCUGAAUUUUUUACGGUGGGAUCCUUCAACUUCCCUGGGCUCGAAAA

pAON AG	AGUUUUUA
pAON CA	CAUUUUUA
pAON CG	CGUUUUUA

Β

Figure S2

Α

3' Ĩ pFSHIV-SRV PK frames FS region +1 FS 28 kDa A -1 FS 47kDa 🚺 21 kDa nFS pFSHIV-SRV PK 5' UUUUUUA G·C G G·C A G·C CGAA CGAGA CGACGA CGACAGA CGACACGA CGACACGAA

Spacer sequence

Β

Figure S3

Α

 $1 \qquad \underline{\mathsf{MR}}{\mathsf{SLGLNFLY}} \ \underline{\mathsf{EYGVSVEPSR}} \ \underline{\mathsf{LGWYPGIHRP}} \ \underline{\mathsf{VATSVS\underline{\mathsf{K}}GEE}} \ \underline{\mathsf{LFT}}{\mathsf{GVVPILV}} \ \underline{\mathsf{ELD}}{\mathsf{GDVNGH\underline{\mathsf{K}}}} \ \underline{\mathsf{FSVSGEGEGD}} \ \underline{\mathsf{ATYG\underline{\mathsf{K}}}{\mathsf{LT}\underline{\mathsf{K}}}{\mathsf{F}}}$

81 ICTTGKLEVP WPTLVTTLTY GVQCFSRYPD HMKQHDFFKS AMPEGYVQER TIFFKDDGNY KTRAEVKFEG DTLVNRIELK

161 GIDFKEDGNI LGHKLEYNYN SHNVYIMADK OKNGIKVNFK IRHNIEDGSV QLADHYQQNT PIGDGPVLLP DNHYLSTQSA 241 LSKDPNEKRD HMVLLEFVTA AGITLGMDEL YK

The matched peptides cover 77% (210/272AA's) of the protein. m/z MH⁺ Submitted Matched Intensity Delta Modifications Start End Cleavages Sequence

	accirca						
804.3860 80	04.3675	14000.0	23.0 1Gln->pyro-Glu	114	119	0	(K)QHDFFK(S)
821.4120 82	21.3941	14000.0	21.8	114	119	0	(K)QHDFFK(S)
1050.5410 105	50.5214	22030.0	18.6	148	156	0	(K)FEGDTLVNR(I)
1266.5891 126	66.5783	66900.0	8.52	120	130	0	(K)SAMPEGYVQER(T)
1282.5758 128	82.5732	16900.0	2.01 1Oxidation	120	130	0	(K)SAMPEGYVQER(T)
1347.6638 134	47.6579	18140.0	4.35	131	141	1	(R)TIFFKDDGNYK(T)
1477.7775 147	77.7645	24810.0	8.77	144	156	1	(R)AEVKFEGDTLVNR(I)
1503.6611 150	03.6598	74930.0 (0.869	61	75	0	(K)FSVSGEGEGDATYGK(L)
1542.8223 154	42.7911	31720.0	20.2	161	174	1	(K)GIDFKEDGNILGHK(L)
1868.0270 186	68.0177	133300.0	4.96	21	37	0	(R)LGWYPGIHRPVATSVSK(G)
1973.8934 197	73.9062	81590.0	-6.48	175	190	0	(K)LEYNYNSHNVYIMADK(Q)
1989.8812 198	89.9011	30540.0	-10.0 1Oxidation	175	190	0	(K)LEYNYNSHNVYIMADK(Q)
2030.0496 203	30.0229	333000.0	13.1	3	20	0	(R)SLGLNFLYEYGVSVEPSR(L) mass matched
2437.2780 243	37.2609	120500.0	7.00	38	60	0	(K)GEELFTGVVPILVELDGDVNGHK(F)
2566.3176 256	66.2932	3174.0	9.52	250	272	0	(R)DHMVLLEFVTAAGITLGMDELYK(-)
2582.3013 258	82.2881	6546.0	5.12 1Oxidation	250	272	0	(R)DHMVLLEFVTAAGITLGMDELYK(-)
4472.3110 447	72.1753	54600.0	30.3	203	243	0	(R)HNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSK(D)
4741.5360 474	41.3605	3245.0	37.0	201	243	1	(K)IRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSK(D)

D

ь				Y
	1	S	18	
201,1234	2	L	17	1942.9909
258,1448	3	G	16	1829.9068
371,2289	4	L	15	1772.8854
485.2718	5	N	14	1659.8013
632.3402	6	F	13	1545.7584
•745.4243	7	L	12	1398.6900
908.4876	8	Y	11	1285.6059
• 1037.5302	9	Ε	10	1122.5426
• 1200.5936	10	Y	9	993.5000
• 1257.6150	11	G	8	830.4367
• 1356.6834	12	۷	7	773.4152
• 1443.7155	13	s	6	674.3468
• 1542.7839	14	v	5	587.3148
• 1671.8265	15	E	4	488.2463
• 1768.8792	16	Ρ	3	359.2037
• 1855.9113	17	s	2	262,1510
	18	R	1	175.1190