## **Supplementary Information and data:**

**Supplementary Figure S1.** RORα and RORγ exhibited a certain degree of redundancy in regulating clock gene expression. The level of *Cry1*, *Bmal1*, *Rev-Erbα*, *E4bp4*, *Per2*, *Npas2*, and *Clock* mRNA expression in liver, BAT, kidney, and small intestines from WT,  $ROR\alpha^{sg/sg}$ ,  $ROR\gamma^{-/-}$ , and  $ROR\alpha^{sg/sg}ROR\gamma^{-/-}$  DKO mice (n=4) was compared at ZT8 and ZT 22. The level of expression was normalized to that of littermate WT mice controls (black bars). Data represent mean ±SD; \* P<0.05, \*\*P<0.01, \*\*\* P<0.001 by ANOVA.

**Supplementary Figure S2.** Activation of *Cry1*, *Bmal1*, *Rev-Erbα*, and *E4bp4* by RORs is mediated through ROREs. (A) Location of the conserved ROREs within the regulatory regions of mouse and human *Cry1*, *E4bp4*, *Bmal1*, and *Rev-Erbα*. The core motifs of the ROREs are shown in bold and are underlined. The numbers refer to the distance to the transcription start site. (B) RORs effectively activate the *Luc* reporter driven by the RORE-containing regulatory region of *Cry1*, *Bmal1*, *Rev-Erbα*, and *E4bp4* in Huh-7 cells. Cells were co-transfected with an p3xFlag-CMV10-ROR expression vector, pCMV-β-Gal, and a pGL4.27 reporter plasmid driven by the RORE-containing regulatory region of *Cry1*, *Bmal1*, *Rev-Erbα*, or *E4bp4* or regions in which the ROREs were mutated (RORE1m, RORE2m, and RORE1m2m, respectively). 24 h later the relative luciferase reporter activities were determined as described in Experimental Procedures. The basal activity of each reporter plasmid in cells co-transfected with the empty vector was normalized to 1. Data present mean ±SEM, \* P<0.01 by ANOVA.

**Supplementary Figure S3.** The transcriptional regulation of *Clock* by RORγ and RORα *in vivo* involves recruitment to the *Clock*(RORE). (A) RORs were able to effectively activate the (+511/+827) *Clock* proximal promoter in Huh-7. The RORE was mutated from GGGTCA to GAATCA which is designated as ROREm. (B) The inverse agonist, T0901317, represses the activation of the *Clock* promoter by both RORα and RORγ in Huh-7 cells. Data present mean ±SEM, \* P<0.01 by ANOVA. (C) *Clock* mRNA expression was examined by QRT-PCR analysis in Hepa1-6 stable cells described above (n=5). The expression of *Clock* in Hepa1-6(Empty) was normalized to 1. (D) RORs and Rev-Erbα were recruited to the *Clock* promoter in Hepa1-6 cells. ChIP analysis was performed with the Hepa1-6 stable cell lines and anti-Flag M2 antibody. Hepa1-6(Empty) served as a negative control. ChIP analysis was performed with anti-ROR antibodies using liver tissues (n=4) isolated from WT, *RORα<sup>sg/g</sup>*, and *RORγ<sup>-/-</sup>* mice at CT22. QPCR amplification of a non RORE-containing distal site of the *Clock* gene was used as a negative control. Data represent mean ±SEM; \*\* P < 0.01, \*\*\* P < 0.01 by ANOVA.

**Supplementary Figure S4.** Regulation of clock genes by wild type and mutant RORs in brown adipocytes and its inhibition by T0901317. (A) Relative expression of *Cry1*, *Bmal1*, *Rev-Erba*, *E4bp4*, and *RORa* mRNA in BAT(E), BAT(ROR $\gamma$ ), and BAT(ROR $\gamma$ E502Q) brown adipocytes stably expressing the empty vector, ROR $\gamma$ , or the ROR $\gamma$ E502Q mutant lacking transcriptional activity. BAT(ROR $\gamma$ ) cells were also treated for 24 h with vehicle or the ROR antagonist T0901317 (10  $\mu$ M). (B) Relative expression of *Cry1*, *Bmal1*, *Rev-Erba*, *E4bp4*, and *ROR\gamma* in BAT(E), BAT(ROR $\alpha$ ), and BAT(ROR $\alpha$ AAF2) brown adipocytes stably expressing the empty vector, ROR $\alpha$ , or the

ROR $\alpha\Delta$ AF2 mutant lacking transcriptional activity. The expression of each gene in BAT(E) cells was normalized to 1. Data represent mean ±SEM; \*\* P < 0.01, \*\*\* P < 0.001 by ANOVA.

**Supplementary Figure S5.** Schematic presentation of the reciprocal transcriptional regulation of clock genes and  $ROR\gamma l$  in peripheral tissues and the control of down-stream ROR $\gamma$  target genes. *In vivo*, ROR $\gamma l$  modulates the peak expression of *Bmal1*, *Npas2*, *Cry1*, and *E4bp4* during ZT20-0, while Rev-Erb $\alpha$  represses the transcription of these clock genes, as well as  $ROR\gamma l$ , during ZT8-12. Bmal1/Clock/Npas2 positively regulate the expression of  $ROR\gamma l$ . ROR $\gamma l$  might function as an intermediary, providing a link between the clock machinery and its regulation of metabolic genes. Bmal1/Clock and Rev-Erb regulate the rhythmic expression of  $ROR\gamma l$  and as a result the rhythmic expression of *Avpr1a* may depend on the rhythmic expression of *ROR\gamma l* and to a certain degree on *Rev-Erb* through its regulation of *ROR\gamma l* and/or its competition with ROR $\gamma l$  for *Avpr1a*(RORE) binding.

| Gene      | Sense primer              | Antisense primer         |
|-----------|---------------------------|--------------------------|
| mRORal    | GAGGTATCTCAGTCACGAAG      | AACAGTTCTTCTGACGAGGACAGG |
| mRORa4    | TGTGATCGCAGCGATGAAAG      | AACAGTTCTTCTGACGAGGACAGG |
| mRORy     | ACTACGGGGTTATCACCTGTGAG   | GTGCAGGAGTAGGCCACATTAC   |
| mGapdh    | AGTATGACTCCACTCACGGCAAAT  | GTCTCGCTCCTGGAAGATGGT    |
| mBmal1    | AACCTTCCCGCAGCTAACAG      | AGTCCTCTTTGGGCCACCTT     |
| mNpas2    | CGCAGATGTTCGAGTGGAAAG     | GTGCATTAAAGGGCTGTGGAG    |
| mCry1     | AGGAGGACAGATCCCAATGGA     | GCAACCTTCTGGATGCCTTCT    |
| mRev-Erba | CATGGTGCTACTGTGTAAGGTGTGT | CACAGGCGTGCACTCCATAG     |
| mE4bp4    | ACGGACCAGGGAGCAGAAC       | GGACTTCAGCCTCTCATCCATC   |
| mClock    | GGCGTTGTTGATTGGACTAGG     | GAATGGAGTCTCCAACACCCA    |
| mPer2     | AGAACGCGGATATGTTTGCTG     | ATCTAAGCCGCTGCACACACT    |
| mAvprla   | CAATGTCCGAGGGAAGACAG      | AATGCTCTTCACGCTGCTGAC    |

## Supplementary Table S1. A series of nucleotide sequences for QPCR primers

## Supplementary Table S2. A series of nucleotide sequences for ChIP-QPCR primers

| Gene                     | Sense primer                | Antisense primer               |
|--------------------------|-----------------------------|--------------------------------|
| <i>mCry1</i> E-box       | GCGAGAACTCAGGTCGTGAG        | GCTTCTCATTGGGCGGCATG           |
| mRORγ -1179/-1042        | GCTAAGAACGGCTATTCCTCCTAATC  | TTCGCTCCCAGCATTCCATTC          |
| mRORγ -160/-70           | CAAGGCCTGGCAAAAACTCAG       | GACCAGTGTCTGGAGTCTTGAG         |
| mRORy distal             | AAGCACAGAATAGTGCTTGGGTAC    | ACCTTCATCTTCTGGCTGGAG          |
| mBmal1 RORE1,2           | GGATTGGTCGGAAAGTAGGTTAG     | GGTAAACAGGCACCTCCGTC           |
| mCry1 RORE1,2            | TCAGTAGCAGTGGGATTATGTTGTATC | GAAGTGGCATAAGGAAGTTACTACATGT   |
| mCry1 RORE3              | GATGTGGCTTGTGCCATTCTAAG     | CTATGCTAGAGGAAGGGCATCTC        |
| mRev-Erbα-<br>RORE1,2    | GTAGACTACAAATCCCAACAATCCTG  | TGGAGCAGGTACCATGTGATTC         |
| mE4bp4-RORE1             | GCAGTGAGAGATGGCTCATGTG      | GAAGTCACTCAGCAGTCCAAAGTC       |
| mGapdh                   | GTATGACTCCACTCACGGCAAAT     | GTCTCGCTCCTGGAAGATGGT          |
| mBmal1 distal            | GCCTGCCTCTTGGAGGATG         | GGCATCTGGCACTGAGGAG            |
| <i>mCry1</i> distal      | CCAGCCTTGTCTACAGAGTAAGTTC   | GAGAACAGAACTACAGAACTAACAACTGTG |
| mRev-Erb $\alpha$ distal | CATGGTGCTACTGTGTAAGGTGTGT   | CACAGGCGTGCACTCCATAG           |
| mE4bp4 distal            | GCTGCCCAAGGGACTCACT         | GATGGATGAGAGGCTGAAGTCC         |
| <i>mBmal1</i> +661/+745  | CTTGCCTGGTCAACCCTTCTAC      | TACGGACTCCCCGACTTGAC           |
| mBmal1 -355/-284         | CTCAGCGAGCTTTAGACCTGAG      | ACCAATTGGCACGCTCTGTG           |
| mBmal1 3' end            | TACAGGGCTGGTTCATCCACTTC     | CTAAGCTGGTAGCATGGAAGAAGTC      |
| mClock RORE              | TAGGCCTTGTGACCCACTTTATTC    | TCCAAACGTGCCCGAGTG             |
| <i>mClock</i> distal     | ACAGAGTTCTGATGGTCAGTCACAC   | GAATGGAGTCTCCAACACCCA          |
| <i>mClock</i> distal     | ACAGAGTTCTGATGGTCAGTCACAC   | GAATGGAGTCTCCAACACCCA          |
| <i>mAvpr1a</i> RORE      | CGACCTTTGTATTTTCCATCCATC    | CACACGCAGAGCAAGATTGAAG         |



| -                 |                                                                                 |        |
|-------------------|---------------------------------------------------------------------------------|--------|
|                   | RORE1                                                                           |        |
| mCry1             | GACAGAACTAGAAATACTAGTTATATAA-GCTGTCCTAGCACAGACTAGAAAGTAGGTCA                    | +23091 |
| hCry1             | GACAGAACTAGAAATTCTAGTTATATAAAGCTGTTCTAGCACAGACTGGTAAGTAGGTCA                    | +66019 |
|                   | ************* *************************                                         |        |
|                   | RORE2                                                                           |        |
| mCry1             | TTGTGATGGGAGTATGCTAAACCACCCACTGGTTGCTATAGCGA <u>TGACCT</u> ACTTTAG-AA           | +23150 |
| hCry1             | TTGTGACGG-AGTATACTAAACCGTCCACTGGTTGCTATAGCAATGACCTACTTTAGGAA                    | +66078 |
|                   | ***** ** ***** ******* ****************                                         |        |
|                   |                                                                                 |        |
|                   | RORE1 RORE2                                                                     |        |
| mBmall            | GGTCGGAAAGT <u>AGGTTA</u> GTGGTGCGACATTTAGGGAAGGCAGAAAGT <u>AGGTCA</u> GGGACGG  | +90    |
| hBmal1            | GGTCGGAAAGT <u>AGGTTA</u> GTGGTGCGACATTTAGGGAAGGCAGAAAGT <u>AGGTCA</u> GGGACGG  | +329   |
|                   | ********                                                                        |        |
|                   |                                                                                 |        |
|                   | RORE1 RORE2                                                                     |        |
| mRev-Erb $\alpha$ | CGCACA-GATCTCAACGTGCCGGCTGCTGGAAAAGT <u>GTGTCA</u> CT <u>GGGGGCA</u> CGAGGCGCTC | -118   |
| hRev-Erb $\alpha$ | CGCGCAAGAGCTCAACGTGCCGGCTGTTGGAAAAGT <u>GTGTCA</u> CT <u>GGGGCA</u> CGAGGCGCTC  | +10    |
|                   | *** ** ** *****************************                                         |        |
|                   | RORF1                                                                           |        |
| mE4bp4            | TTTACAGATGCATCCAAACAGAAAAAGTGGGTCAGTTTGTTGCCGAGATAGGGCTGGC-C                    | +6125  |
| hE4bp4            | TTTACAGAGCACCCAAATAGAAAAAGTAGGTCAATTTGTTGCTAGGTGATAGAATAGAATAGAATTC             | +6024  |
|                   | ******* *** ***** *********************                                         |        |
|                   |                                                                                 |        |





Α





