
  

Supplementary Figure 1. Nonlinear proliferation in drug-treated and high-density cultured cells. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 
 
Supplementary Figure 1. Nonlinear proliferation in drug-treated and high-density cultured cells. (a) Cells expressing 
histone H2BmRFP were cultured in complete medium (PC9 and MCF10A) or in the presence of erlotinib (as indicated) and 
analyzed by time-lapse live-cell automated microscopy. Images were obtained at the indicated times from approximately 1 
mm2 within a single well and nuclei are visible in white. Note that only MCF10A cells approach confluence due to their rapid 
rate of proliferation. (b) Proliferation slows in response to erlotinib or at high cell density. Nuclei from replicate wells were 
counted every hour, normalized for cell number and plotted on a log2 scale. PC9 cells exhibit linear growth throughout the 
experiment as indicated by the line overlapping the data (R2=0.9884). Nonlinearity begins in PC9 cells in response to erlotinib 
at approximately 24 h (arrow) and in MCF10A cells at high density around 60 h (double arrowhead). Bars at each data point 
indicate intraexperimental error (standard deviation) from replicate wells. For PC9, n = 6; PC9 in erlotinib, n = 6; MCF10A, n = 
2. (c) Surface plots of proliferation were obtained from four different cell lines of diverse backgrounds and differing sensitivities 
to EGFR TKI: i) PC9, an oncogene-addicted human lung adenocarcinoma cell line hypersensitive to erlotinib-like TKI due to an 
EGFR mutation 1,2; ii) MCF10A, a non-tumorigenic human mammary epithelial cell line, which is dependent on EGF for 
proliferation 6; iii) CA1d, a mutant H-ras-expressing tumorigenic MCF10A derivative 7,8; and iv) SQ20B, a human laryngeal 
squamous cell carcinoma cell line with genomic amplification of EGFR 9. (d) Surface plot of the response of A375 cells to the 
Raf inhibitor PLX-4720. A375 cells are oncogene-addicted melanoma cells containing mutant B-Raf that are highly sensitive to 
Raf inhibition 10. 



  

 
Supplementary Figure 2. Nonlinear proliferation rates. 

 
 
 
 

  

 
 
Supplementary Figure 2. Nonlinear proliferation rates. (a) Proliferation of MCF10A cells grown in the absence of drugs 
(DMSO vehicle control, open squares) or in the presence of the indicated concentrations of erlotinib (filled circles) or 
cycloheximide (CHX; open diamonds) are shown. The response to CHX was fit to a line and demonstrates a doubling 
time (DT) of 28.17 h. In contrast, the response to erlotinib was nonlinear. Data from a single experiment are shown. Linear 
or nonlinear responses, respectively, were reproduced in at least three independent experiments.  (b) Erlotinib induces 
entry into quiescence and nonlinear proliferation rates in PC9 cells. Upper panel, PC9 cells were cultured in complete 
medium with 15.6 nM erlotinib for the indicated times and analyzed by flow cytometry to determine the fraction of cells in 
each cell cycle compartment based on DNA content. Lower panel, cell counts from image stacks at 2-hour intervals are 
presented on a normalized log2 scale and indicate population doublings. Vehicle-treated cells (DMSO; open circles) 
demonstrated linear proliferation whereas erlotinib-treated cell proliferation (open squares) was nonlinear. (c) Serum and 
growth factor (GF) deprivation causes accumulation of cells in G1 and nonlinear effects on proliferation curves. Upper 
panel, MCF10A cells were cultured in complete medium (+serum/GF) or serum and GF-deprived medium (-serum/GF) 
and analyzed by flow cytometry to determine the fraction of cells in each cell cycle compartment based on DNA content 
and incorporation of bromodeoxyuridine. The removal of serum and GF results in >95% of cells in G1 after 24 h. Lower 
panel, cells were counted at one-hour intervals. Serum and GF deprivation (open squares) results in a nonlinear 
proliferation curve whereas in complete medium (open circles) the proliferation is linear. Data from a single experiment 
are shown. Nonlinear response of serum/GF deprivation was reproduced in at least three independent experiments. 



  

Supplementary Figure 3. Quiescence-Growth model fits of CA1d cells treated with erlotinib. 

 
 
 
  

 
Supplementary Figure 3. Quiescence-Growth model fits of CA1d cells treated with erlotinib. 
Open circles indicate data points from cell counts of CA1d cells exposed to vehicle (DMSO) or 
erlotinib at specified concentrations for 96 h. Green lines represent the best fit of the Quiescence-
Growth model when the division rate (d) is fixed to that of the untreated population, a = 0, and q is 
fit by nonlinear least squares regression. The red line in the 16 µM erlotinib panel was obtained by 
allowing both a and q to be fit. The values of these parameters are shown in Supplementary 
Table 1. For a dynamic visualization of the effects of parameter modulation on population 
doublings, see Supplementary Software 1. 
 



  

 
Supplementary Figure 4. Detection of cell death and division in image sequences. 
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Supplementary Figure 4. Detection of cell death and division in image sequences. (a) Recognition of 
cell death based on the reduction of nuclear surface area below threshold for detection. A sequence of 
images (upper panel) is paired with detection output from ImageJ (lower panel). Blue arrows indicate 
nuclei that shrank dramatically from the preceding frame, due to cell death. Black arrows show that the 
shrunk nuclei are now below the level of detection of ImageJ. Note that ImageJ does not track individual 
nuclei from frame to frame and, therefore, the nuclear ID is not maintained from image to image. (b) 
Example image sequence demonstrating mitotic events visualized by fluorescence microscopy of nuclei 
(H2BmRFP expression). Arrow indicates metaphase chromosomes preceding anaphase separation in the 
following frame. 



  

 
Supplementary Figure 5. Intermitotic time distribution fit by an EMG model. 
 
 

 
  

 
 
Supplementary Figure 5. Intermitotic time distribution 
fit by an EMG model. An IMT distribution obtained from 
exponentially proliferating MCF10A cells was fit to an 
EMG and the best-fit parameters are indicated. Using the 
method of Powell 3, all parameters (µ, σ and k) are used to 
determine the division rate of the population (parameter d 
in the Quiescence-Growth model).  



  

 
 
 
Supplementary Figure 6. EMG parameters are differentially affected by drugs. 

 
 

 
 

 
  

 
 
Supplementary Figure 6. EMG parameters are differentially affected 
by drugs. Intermitotic times of MCF10A cells treated with vehicle 
(DMSO) have a relatively compact distribution with a small rightward 
skew. Upon treatment with erlotinib, the rightward skew increases 
substantially and is captured by the increase of the k parameter. 
Cycloheximide (CHX) increases the intermitotic times of all of the cells in 
the population and is captured primarily by the increased value of the 
EMG parameter µ. These single-cell data correspond to the proliferation 
curves (population-level data) shown in Supplementary Figure 2a. 



  

Supplementary Figure 7. Ki-67 intensity decreases in erlotinib-treated PC9 cells. 
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Supplementary Figure 7. Ki-67 intensity decreases in erlotinib-treated PC9 cells. (a) PC9 cells were treated with 15.6 nM 
erlotinib for the indicated amounts of time, fixed and analyzed for expression level of Ki-67 by flow cytometry. The Ki-67low 
population was determined using an arbitrarily chosen threshold intensity value of ~1500 and is indicated for each histogram. 
Note that the Ki-67 level shifts downward but does not disappear as previously described 4. The fractions of quiescent cells in 
each of these conditions as predicted by the parameterization of the Quiescence-Growth model from single cell data shown in 
Figure 4 of the main text are 4%, 43% and 57%, respectively, which approximates the Ki-67low population shown.  (b) PC9 
cells were treated with the indicated concentrations of erlotinib or DMSO for ~72 h, fixed with paraformaldehyde, 
immunostained for Ki-67 (green), counterstained with Hoechst 33342 (blue) and imaged by fluorescence microscopy. Smaller 
subregions of obtained images are shown. (c) All cells in the full images from which the subregions in (b) were derived were 
quantified for Ki-67 intensity and normalized to nuclear area. A density plot of the distribution of normalized intensity values is 
shown. The vertical dashed line indicates the threshold value arbitrarily set to 3 to approximate the fractions of Ki-67low cells in 
DMSO-treated cells in a above. Fractions of cells with less than these threshold values of Ki-67 intensity are indicated. The 
predicted quiescent fractions at this time (based on the model fits described in Figure 4 of the main text) are 4%, 64% and 
91% for DMSO, 15.6 nM erlotinib and 62.5 nM erlotinib, respectively.  



  

Supplementary Figure 8. PLX-4720 induces nuclear p27 expression in A375 cells. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

  

 
Supplementary Figure 8. PLX-4720 induces nuclear p27 expression in A375 cells. A375 cells treated with 
DMSO (left) or 16 µM PLX-4720 (right) for 72 h were immunostained for p27 (green). The expressed histone 
H2B-mRFP was used to detect nuclei (blue). Note faint diffuse staining in the cytoplasm of DMSO-treated cells. 
The significant overlap of the green and blue channels in the PLX-4720-treated cells indicates strong expression 
and nuclear localization of p27. The decreased number of cells treated with PLX-4720 correlates with increased 
levels of nuclear p27 and is indicative of cell cycle arrest.   



  

Supplementary Figure 9. Analysis of PC9 cell survival in erlotinib from Supplementary Video 1. 
 

 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
 

  
 

Supplementary Figure 9. Analysis of PC9 cell survival in 
erlotinib from Supplementary Video 1. PC9 exposed to 
1 µM erlotinib for 4 days resume proliferation upon 
erlotinib removal, indicating quiescent cells are viable.  
The data for this experiment is shown in Supplementary 
Video 1. Nuclei were quantified and plotted on a 
normalized log2 scale (Population Doublings). Arrows 
indicate time of erlotinib removal by medium replacement 
at 96 and 140 h. (Note that the rate of proliferation after 
erlotinib withdrawal returned to pretreatment levels.) 

 



  

Supplementary Figure 10. Fractional Proliferation of primary human SCC cells shown in Supplementary 
Video 3. 
 

 
 
 
 
 
 

  

 
Supplementary Figure 10. Fractional Proliferation of primary human SCC cells 
shown in Supplementary Video 3. Patient-derived tumor cells were isolated from a 
recurrent squamous cell carcinoma of the tongue. Cells were labeled with recombinant 
baculoviral particles (CellLight® Nucleus, Invitrogen) at 20 particles per cell, cultured in 
complete growth medium to obtain exponential growth, and imaged as described for 
lentiviral-mediated expression. From left to right, the first panel indicates the single cell 
lifespans, the second is the IMT distribution and the third is the Fractional Proliferation 
graph. A large number of death events occurred in cells that never divided during the 
experiment, which was represented by adjusting the death rate. This adjusted death rate 
together with the division and quiescence rates derived from the data shown in the 
middle and left panels describes the observed population doublings shown in the right 
panel. 



  

Supplementary Table 1. Quiescence-Growth model parameters. 
 

 
  

condition d q a 
DMSO 0.0455 0.0050 0.005 
1µM 0.0455 0.01550 0.005 
4µM 0.0455 0.02063 0.005 
16µM 0.0455 0.06217 0.005 
16µM* 0.0455 0.04032 0.01295 

 
Supplementary Table 1. Quiescence-Growth model parameters. 
Values shown were fit to the data as described and shown in 
Supplementary Figure 3. Values for rates of division (d), quiescence (q) 
and death (a) correspond to the green lines for all conditions (in 
Supplementary Fig. 3), except for 16µM*, which corresponds to the red 
line. 



  

Supplementary Table 2. Statistical tests of null hypothesis that the data shown in Supplementary Figure 
5 are sampled from the indicated model distribution. 
 
 

  Model Test Statistic P-value 
Gaussian Shapiro-Wilk W = 0.7511 1.784e-15 

log normal Shapiro-Wilk W = 0.8915 1.132e-09 

inverse normal Shapiro-Wilk W = 0.9431 3.318e-06 

shifted gamma ks D = 0.1644 0.0002532 

EMG ks D = 0.1012 0.06671 
Supplementary Table 2. Statistical tests of null hypothesis 
that the data shown in Supplementary Figure 5 are 
sampled from the indicated model distribution. An IMT 
distribution obtained from exponentially proliferating MCF10A 
cells was fit to the indicated models. All models except the 
EMG had sufficient evidence to reject them as models 
describing the distribution (P-value less than 0.05). ks, 
Kolmogorov-Smirnoff test. 



  

 
Supplementary Table 3. F-tests of null hypothesis that the EMG model does not provide a better fit than 
other models. 
 

  

Model MCF10A AT1 CA1d #1 CA1d #2 

Normality 0.0005 0.0001 0.0002 0.0007 

Log-Normal 0.0096 0.0015 0.0015 0.0077 

Inv-Normal 0.1167 0.0027 0.0175 0.1335 
Gamma 0.0013 0.0000 0.0001 0.0000 

 
Supplementary Table 3. F-tests of null hypothesis that the EMG model 
does not provide a better fit than other models. IMT distributions were 
obtained from the indicated breast cancer cell lines. Optimal fits of the 
indicated models to the data were compared to the optimal model fit of an 
EMG distribution using the F-test; P-values are shown. Instances where 
there is insufficient evidence that the EMG model provides a better fit are 
indicated in bold. The model of normality (Gaussian) is nested within the 
EMG model. However, the validity of an F-test comparing the other (non-
nested) models is unknown. Inv-Normal, inverse normal distribution. 
 



  

SUPPLEMENTARY NOTE 1 
Mathematical Models 
Alternative Quiescence-Growth model containing death rates from both compartments 

It is possible that cells die at different rates form each compartment. To accommodate this possibility 
we have developed an alternative model. Each compartment D and Q are represented by x and y and have a 
different death rate (ad and aq). This alternative model can be derived as follows: 

 
𝑥! = 𝑑 − 𝑞 − 𝑎! 𝑥 

 
𝑦! = 𝑞𝑥 − 𝑎!𝑦 

 
This is solvable with the following analytical form: 
 

𝑥 = 𝑥!𝑒 !!!!!! !   
 

𝑦 =
1

𝑑 − 𝑞 + 𝑎! − 𝑎!
𝑒!!!!(𝑞 𝑥! 𝑒 !!!!!!!!! ! − 1 − 𝑦! + 𝑑 + 𝑎! − 𝑎! 𝑦!)     

 
If both death rates are equal, the model simplifies to the presented form in the main paper. In our case, 

the observed death rates were relatively small, and the parameter estimate intervals for each rate overlapped. 
Therefore, we had insufficient evidence to use the model with different death rates from each compartment and 
chose, instead, the simpler form described in the main text. 

 
EMG Model of IMT distributions  

The non-Gaussian shape of IMT has been reported several decades ago 5, but to our knowledge no 
standard or customary fit was proposed. To describe the non-Gaussian IMT distributions from single-cell data, 
we considered several models, including log-normal, inverse-normal and shifted gamma distributions, all of 
which can fit the consistently observed rightward skew of IMT distributions. Log-normal, inverse-normal (and 
normal) distribution models routinely failed the Kolmogorov-Smirnoff (ks) one-sided test, with P values often 
less than 10-7, indicating there is sufficient evidence to exclude the model as accurately describing the data. 
Shifted gamma distributions passed the ks test occasionally, but often failed. The best description of shape for 
the majority of observed distributions was an Exponentially-Modified Gaussian (EMG) and is described in detail 
below. An example of testing the various models for fitting the data is shown in Supplementary Figure 6. 

 
The EMG model results from the convolution of a Gaussian (normal) distribution and an exponential 

distribution. The Gaussian probability density function is described by the following equation with x 
representing the value, and µ the mean and σ the standard deviation. 

 
(eq. 1) 

𝑔 𝑥; 𝜇,𝜎 = 2𝜋𝜎! !!!𝑒!
!!! !

!!!  
 

The exponential probability density function is described by the following equation, with x representing 
the value and λ representing the rate. 

(eq. 2) 
ℎ 𝑥; 𝜆 = 𝜆𝑒!!" , 𝑥 ≥ 0 

 
Convolution of these two is simplified to a lower bound of zero due to the boundary condition on the 

exponential probability density function (and since an intermitotic time must be a positive value). 
 

 (eq. 3) 

𝑓 𝑥; 𝜇,𝜎, 𝜆 = 𝑔 ∗ ℎ 𝑥 = 𝑔 𝑥 − 𝑦 ℎ 𝑦 𝑑𝑦
!

!
 

 
This results in the following analytic form of the EMG probability density function. 



  

 
(eq. 4) 

𝑓 𝑥; 𝜇,𝜎, 𝜆 =
𝜆
2
𝑒
!
! !!!!!!!!!

!
𝑒𝑟𝑓𝑐

−𝑥 + 𝜇 + 𝜆𝜎!

𝜎 2
 

 
Note that the meaning of the parameters of the EMG distribution has changed from that of its parts, e.g. µ 

no longer represents the mean of the distribution. A functional application of this work has been published in 
the R code repository (http://r-project.org) and can be viewed and used by calling the ‘emg’ package 
(http://cran.r-project.org/web/packages/emg/emg.pdf). 

 
Calculation of division rate from EMG 

The division rate for cells undergoing exponential growth is usually approximated by the natural logarithm 
of 2 divided by the mean division time. As shown above, however, IMT distributions are non-Gaussian and the 
mean cannot accurately represent the population when the distribution deviates substantially from normality. A 
probability method that accounts for the effects of heterogeneity in estimating division rate (d) of dividing 
bacteria has been described. 3 We substituted the EMG distribution in place of the Pearson Type III distribution 
used in the original formulation (equation 10 in reference 3), which results in the following formula to be solved 
for the division rate (d): 

 (eq. 5) 

2 𝑒!!"𝐸𝑀𝐺 𝜏 𝜇,𝜎, 𝜆 𝑑𝜏 = 1
!

!
 

 
EMG is a statistical model with three forms: probability density, cumulative and survival. Each one of 

these functions considers all EMG parameters. Using estimates for µ, σ, and λ obtained from EMG model fits 
to IMT distributions, the division rate, p, is obtained by solving for the root. This calculation is performed by the 
function generation.rate in the R code shown below. Moreover, the estimation of quiescence requires the 
survival function of the EMG and relies on all parameters. 

 
Likelihood of Quiescence model 

Estimation of the number of cells that reach the end of an experiment (EoE) that are quiescent was 
determined using a likelihood model and survival analysis. The survival function describes the probability that a 
cell reaching the EoE would have divided if more time were observed. The likelihood formula uses both the 
complete lifespans obtained from divided cells (i) and the censored lifespan information from cells reaching the 
EoE (j). By definition, the likelihood function is the conditional probability of the data given the parameters of 
the model. The likelihood function is defined as the product of the likelihood of each datum The dividing cell 
population is represented by an EMG model (f for probability density and F for cumulative distribution), the 
fixed percentage of quiescent cells is represented by q, the information of observed divisions is represented by 
i and lifespans without observed division represented by j.  

 
(eq. 6) 

𝑓 𝑥! , 𝑦! 𝜇,𝜎, 𝜆 = 1 − 𝑞 𝑓 𝑥! 𝜇,𝜎, 𝜆
!

𝑞 + (1 − 𝑞)(1 − 𝐹 𝑦! 𝜇,𝜎, 𝜆 )
!

 

 
The first product is the standard likelihood estimate, modified by the fraction of dividing cells (1-q). The 

second product is the likelihood that a cell is quiescent (q) multiplied by the chance that it was going to divide 
later (1-F). The model output is the fraction of quiescent cells present in the observed single-cell lifespan data 
and can be fit by maximizing the negative log likelihood using the emg3.mle function in the fracprolif R 
package. The data are passed to this function as a list of observed Lifespans (in hours) and whether the 
observation persisted to the EoE (TRUE for cells that reach the EoE). See Computational tools below for further 
details. 
 



  

Calculating the rate of entry into quiescence 
Once the division rate and the fraction of quiescent cells are calculated, it is possible to derive a rate of 

entry into quiescence. Each rate represents the number of expected events (divisions or transitions into 
quiescence) divided by the total observation time. 

 

  𝑑 =
divisions

observation  time  in  D                                       𝑞 =
transitions  into  quiescence
observation  time  in  P  

Total observation time in this example extends to a continuous model.   
 
The conceptual diagram of the two compartments of a cell population, dividing (D) and non-dividing (Q), 

is shown with the rates of transition between them in Figure 2 of the main text, and Figure 3 illustrates the data 
used in likelihood estimation, including the observed lifespan of the cells and the parameters of the EMG 
model fit to the IMT distribution.  The total cell observation time (the sum of lifespans of all cell observed) of the 
D compartment in the experiment is not explicit, as it includes all the observations of cells that divided and 
some fraction of the observations at the end of experiment. However, the actual observation time of cells in the 
D compartment is not required, as it will cancel out. Both rates are defined relative to the D compartment, i.e. 
both arrows in Fig. 3 relate to exit from the D compartment and, thus, the relevant cell observation times for 
both rates are the same. It follows that the count of events (c) in each compartment at the end of an 
experiment with observation time (ot) is: 

𝑐! = 𝑑𝑜!                                  𝑐! = 𝑞𝑜! 
 

The fraction of quiescence events (fQ) observed at end of experiment is defined as: 
 

𝑓! =
𝑐!

𝑐! + 𝑐!
 

 
The observation time cancels, and the following equation results: 

 
𝑓! =

𝑞
𝑑 + 𝑞

 

 
Solving for the unknown rate of quiescence results in the following transform: 

 

𝑞 =
𝑓!

1 − 𝑓!
𝑑 

 
As shown, the rate of quiescence is calculated based on the fraction of quiescent cells and the rate of division. 

 
 
  



  

 
SUPPLEMENTARY NOTE 2 
Computational tools 

Mathematica11 was used for generating the interactive Mathematica CDF Player file (Supplementary 
Software 1) and the surface plots in Supplementary Figure 1. 

The freely available ImageJ12,13 software (http://rsb.info.nih.gov/ij/) was used for image analysis (manual 
single-cell tracking and automated cell counting by enumeration of nuclei).  

The freely available statistical software package R14 (http://www.R-project.org) was used for statistical 
tests and data analyses and to develop the fracprolif package (R extension). 

 
Basic description of the fracprolif package 

We have developed an extension of R that incorporates all of the code used to analyze single-cell and 
population-level proliferation data and generate Fractional Proliferation Graphs. The package is called 
fracprolif and must be installed into the R framework in order to use it. The fracprolif package contains two 
sample data files, all of the functions for performing the analyses, and manual pages (description files) for the 
entire package. For those familiar with R, detailed information is provided within the package itself by typing 
the following into the R console:  

 
?fracprolif 
 

A step-by-step guide to generating data appropriately structured for analysis by fracprolif 
Single-cell data 
Single-cell data are obtained by manually tracking individual cells from an image stack (here we use 

H2BmRFP-expressing cells; cell culture and imaging techniques are described in Methods). ImageJ, or any 
software capable of opening the entire image series as a stack and advancing frame by frame, is used for the 
manual tracking. Individual cells are followed across frames and observed cell lifespans are recorded. Each 
cell lifespan is defined by a start event (mitosis) and an end event (mitosis, death or end of experiment). Start 
events are shared among siblings (sister cells) and assigned an identifier comprised of the frame number and 
a letter. End events are assigned an identifier of frame number and a letter if mitotic. In some cases a mitotic 
end event identifier corresponds to another start event identifier (indicative of cell progeny). Events are 
converted to time units based on the frame acquisition rate (sampling interval), and cell birth time and lifespan 
are expressed in hours. The steps performed to record the single cell data are as follows: 

 
1. When a mitotic event occurs, the daughter cells are each assigned the next rows available in the data file 
2. The frame number of the event is recorded in the Birth.frame column of the rows assigned in (1). 
3. The event from (1) is given an alphabetic identifier not previously used within the same Birth.frame. 
4. The last frame a cell is observed in is recorded in the End.frame.  
5. If the last frame is a mitotic event, assign letter as (3) in End.ID. 
6. If the cell is present in the last frame of the image stack, the column End.of.Expt is marked TRUE, otherwise 

it is marked FALSE. 
7. If a cell is observed to die, this is recorded in the column Death as TRUE, otherwise as FALSE. 
8. Create Birthtime column in hours by dividing Birth.frame by the sampling rate (e.g. 5 images per hour). 
9. Create Lifespan column in hours by dividing (End.frame - Birth.frame) by the sampling rate. 

 
A movie demonstrating the manual labeling is provided as Supplementary Movie 2 and an example data 

set is provided within the fracprolif package. 
 

To load the data set, type the following command in the R console: data(ca1d.erlotinib) 
 
To view the column names and the first few rows of data, type: head(ca1d.erlotinib) 
 
The complete raw data can be viewed by typing: ca1d.erlotinib 

 
  



  

Population-level data 
Cell counts are obtained from the same image stack as for single-cell tracking except that the sampling 

rate is once per hour. The image stack is opened in ImageJ and automatically processed using the following 
steps: 1) threshold the images and convert them to binary, 2) reduce undersegmentation by performing a 
watershed algorithm, and 3) identify the objects (nuclei) within each image. The ImageJ macro used to perform 
these steps is shown here: 

 
// ImageJ macro for nuclei enumeration  
// Written by Darren R. Tyson, 2009 
 
run("Subtract Background...", "rolling=50 stack");  
setThreshold(14, 4000);  
run("Convert to Mask", " ");  
run("Watershed", "stack"); 
run("Analyze Particles...", "size=150-4000 circularity=0.20-1.00 show=Outlines clear exclude 

include summarize stack"); 
 
The object counts obtained from the ImageJ macro are stored in a column for each image stack and 

counts from replicate conditions (within a single experiment) are summed and converted to log2 scale for each 
unit of time (in this case every hour). An example data set of total cell counts was generated from the same 
experiment in which the single-cell data described above was obtained and is provided with the fracprolif 
package in R. The data can be loaded by typing the following command in the R console: 

 
data(ca1d.erlotinib.totals) 
 
Time (in hours) is provided in the first column and cell counts obtained in the presence of various 

concentrations of erlotinib (indicated by the column name, e.g. e_16000 for 16 µM erlotinib) are provided in the 
remaining columns. 

 
Cut-and-paste code to produce the Fractional Proliferation Graphs shown in Figure 3f. 

Using the two data sets described above, the graphs shown in Figure 3f can be generated by copying 
and pasting all of the code below into the R console. (Note that the code can be copied and pasted piecewise, 
if necessary, and is also available in a separate file, Supplementary Software 2.)  

 
#          Load the data 
################################### 
data(ca1d.erlotinib) 
data(ca1d.erlotinib.totals) 
 
#        Process the data 
################################### 
mitotic.lifespans <- subset(ca1d.erlotinib,  !End.of.Expt  &  
                                             !Death        &  
                                             !is.na(Lifespan))$Lifespan 
 
censored.lifespans <- subset(ca1d.erlotinib, End.of.Expt   &  
                                             !Death        &  
                                             !is.na(Lifespan))$Lifespan 
est <- q.mle.emg.estimate(mitotic.lifespans, censored.lifespans) 
r <- q.rates("emg", est) 
m <- lm(DMSO ~ Time_h, ca1d.erlotinib.totals) 
untreated.division.rate <- coef(m)['Time_h']*log(2) 
half.imt <- log(2)/untreated.division.rate/2 
y <- ca1d.erlotinib.totals$e_16000 - ca1d.erlotinib.totals$e_16000[1] 
t <- ca1d.erlotinib.totals$Time_h 
fit <- nls(y ~ log(split_tot(t, 1, 0,  
                             untreated.division.rate, r['d'], 
                             0.0, r['q'], 
                             0.0, 0.0, a, a, 
                             half.imt), 2), 
           start=list(a=0.003), 
           lower=list(a=0), 
           algorithm="port") 
a <- coef(fit) 



  

 
#      Plot the data 
############################# 
dev.new(width=7, height=3) 
par(mfrow=c(1,3)) 
d <- subset(ca1d.erlotinib, !Death & !is.na(Lifespan)) 
 
#    Birthtime vs Lifespan plot 
################################### 
plot(d$Birthtime, 
     d$Lifespan, 
     main="CA1d 16µM erlotinib", 
     xlab="Birth time (h)", 
     ylab="Lifespan (h)", 
     ylim=c(5,90), xlim=c(0,25)) 
n <- length(d$Lifespan) 
text(20,80,substitute("n" == n,list(n=n))) 
p <- 100*length(subset(d, End.of.Expt)$Lifespan) / n 
text(15,85,substitute(p * "% EoE", list(p=round(p)))) 
 
#   Intermitotic Time Histogram 
################################### 
hist(mitotic.lifespans, 
     main='CA1d 16µM erlotinib', 
     xlab="Observed Intermitotic Times (h)", 
     breaks=20, 
     freq=FALSE) 
curve(demg(x, coef(est)['mu'],  
           coef(est)['sigma'],  
           coef(est)['lambda']),  
           add=TRUE, col='red', lwd=2) 
text(35, 0.07,  pos=4, labels=substitute("n"==n, list(n=length(mitotic.lifespans)))) 
text(35, 0.065, pos=4, labels=substitute(mu==m, list(m=round(coef(est)['mu'],2)))) 
text(35, 0.06,  pos=4, labels=substitute(sigma==s, list(s=round(coef(est)['sigma'],2)))) 
text(35, 0.055, pos=4, labels=substitute(kappa==l, list(l=round(1/coef(est)['lambda'],2)))) 
ks <- ks.test(mitotic.lifespans, "pemg",  
              mu=coef(est)['mu'], 
              sigma=coef(est)['sigma'], 
              lambda=coef(est)['lambda']) 
text(35, 0.05, pos=4, labels=substitute("ks p-val"==p, list(p=round(ks$p.value,2)))) 
 
#  Fractional Proliferation Graph 
################################### 
plot (t, y,  
      main="CA1d 16µM erlotinib", 
      xlab="Time (h)", 
      ylab="Population Doublings", 
      ylim=c(0,1.5)) 
       
model.total <- log(split_tot(t, 1, 0, untreated.division.rate,  
           r['d'], 0.0, r['q'], 0, 0,  
           a['a'], a['a'], half.imt), 2) 
lines(t,model.total,col="green") 
lines(t,model.total*split_fq(t, 1, 0, untreated.division.rate,  
           r['d'], 0.0, r['q'], 0, 0,  
           a['a'], a['a'], half.imt), col="red") 
lines(t,model.total*split_fd(t, 1, 0, untreated.division.rate,  
           r['d'], 0.0, r['q'], 0, 0,  
           a['a'], a['a'], half.imt), col="blue") 
text(2, 1.4, pos=4, substitute("d" == d, list(d=round(r['d'], 4)))) 
text(2, 1.3, pos=4, substitute("q" == q, list(q=round(r['q'], 4)))) 
text(2, 1.2, pos=4, substitute("a" == a, list(a=round(a['a'], 4)))) 

 
 
 
  



  

SUPPLEMENTARY NOTE 3 
Orthogonal assays of erlotinib-induced PC9 cell quiescence 
To our knowledge, there is no known positive marker of quiescent cells, but low Ki-67 expression is a de facto 
surrogate 4. By flow cytometry the fraction of Ki-67low PC9 cells increased over time in response to erlotinib in a 
similar fashion to the increase in the quiescent cell fraction predicted from the integrated model 
(Supplementary Fig. 7a). In additional independent assays, cells were fixed after various times of treatment 
with erlotinib and stained by indirect immunofluorescence for Ki-67 (Supplementary Fig. 7b,c) or p27Kip1, a 
known inhibitor of cell cycle progression 15. The fractions of Ki-67low cells were similar to the quiescent fraction 
determined using the integrated model. Conversely, the levels of p27 increased in response to erlotinib 
treatment (reference 16 and not shown). Thus, these separate assays all indicate that PC9 cells enter 
quiescence in response to erlotinib. In addition, A375 cells (an oncogene-addicted melanoma cell line 
expressing V600E B-Raf 10) treated with the Raf inhibitor PLX-4720 (Supplementary Fig. 1d) increase their 
expression and nuclear localization of p27Kip1 (Supplementary Fig. 8), further supporting the relationship 
between G1 arrest and nonlinear proliferation rates. 
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