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ABSTRACT The method of evolutionary stable strategies
(ESS), in its current form, is confronted with a difficulty when it
tries to explain how some social behaviors initiate their evolution.
We show that this difficulty may be removed by changing the as-
sumption made tacitly in game theory (and in ESS) of randomness
of meetings or encounters. In reality, such randomness seems to
be rare in nature. Family, population and social structure, cus-
toms, and habits impose various types of deviation from random-
ness. Introducing nonrandomness of meeting in a way formally
similar to assortative mating, we show that the bar to initial in-
crease of inherited cooperative or altruistic behaviors can be re-
moved, provided there is sufficient assortment of meetings. Fam-
ily structure may cause contacts predominantly between certain
types of relatives, and one can reconstruct some results ofclassical
kin selection in terms of evolutionary stable strategy with assor-
tative meetings. Neighbor effects and group selection might be
similarly treated. Assortment need not be a passive consequence
of population and social structure, but it can also be actively pur-
sued. Behaviors favoring the choice of cooperative companions
will have the effect of favoring the evolution of cooperativeness.
It can be shown that discrimination in the choice of companions,
especially ifcombined with assortment, can favor the development
ofcooperativeness, making initial increase ofcooperative behavior
possible even at levels of assortment passively imposed which
would not be adequate, per se, to guarantee the increase of co-
operativeness. It is possible that, in some cases, cooperativeness
and behavior favoring some type of assortment are coselected.

1. Introduction
The concept of evolutionarily stable strategies (ESS) as sug-
gested by Maynard Smith and Price (1) is tightly, although
usually tacitly, connected with the assumption of random en-
counters among individuals in a population, regardless of their
strategy or phenotype. Only with this assumption, polymorphic
and individually mixed strategies are equivalent in their effect
on the individual payment function-a crucial prerequisite for
the application of game theory, and especially of ESS, to pop-
ulation biology. In most natural situations, however, the as-
sumption ofrandom encounters is unlikely to be met. This may
happen because of (i) nonpanmictic structure of the population
and (ii) active choice of companions, especially in higher or-
ganisms. In the case ofnonrandom encounters imposed by the
population structure, they may tend to occur within the family.
Moreover, in many populations, neighbors are likely to be more
closely related than more widely separated pairs and thus more
likely to choose the same strategy, independently of whether
this choice is inherited genetically or culturally. Finally, even
unrelated individuals sharing a similar strategy may tend to con-
gregate because of their choice or avoidance of specific envi-
ronments, or simply because they belong to the same social
group.

In the case of nonrandom encounters due to active choice,
individuals may actively seek or avoid encounters with other
individuals of their phenotype or strategy. These choices may
be the result of learning by the individual, or they may be ge-
netically or culturally inherited traits that have spread in the
population by natural selection. We saw that congregation of
individuals with similar strategies might be the passive conse-
quence of similar choice of habitats. One can also assume that
the reverse can be true, so that the active choice ofcompanions
with similar strategies may be responsible for the choice of sim-
ilar habitats.
The first objective of this work is to generalize the concept

of evolutionary stability under the assumption of nonrandom
encounters imposed by population and social structure, includ-
ing within-family encounters (i.e., kin selection), group selec-
tion, and neighbor effect. We call this assortment "structural."
Second, we study the evolutionary effects of nonrandom en-
counters due to active choice ofcompanions and discuss the co-
evolution ofthis type ofselective assortment, together with that
of sociality.
2. Evolutionary stability with random and nonrandom
encounters
We concentrate on a situation in which individuals in the pop-
ulation have two alternative strategies, SI and S2. Paraphrasing
the model by Maynard Smith and Price (1), the outcome of an
encounter between two individuals in the population is mea-
sured in terms ofsome evolutionarily relevant payment function
measured on the scale of Darwinian fitness. Let V1) be the ex-
pected increment to the fitness ofan individual practicing strat-
egy i after an encounter with an individual of strategyj. Finally,
let x (0 ' x ' 1) be the proportion of individuals who choose
the first strategy. With the tacit assumption that encounters are
random and independent of strategy, the expected payment for
individuals choosing strategy i (i = 1,2) can be written, for
Maynard Smith and Price's model (1):

Vi(x) = XVil + (1 -X) Vi2- [2.1]

We consider the general situation, in which uY = u. (x) is the
probability that an individual practicing strategy Si encounters
an individual of strategy Sj (ij = 1,2; uil + Ui2 = 1)
The expected payment for a strategy Si in this case is

Vi(x) = uil(x)Vil + Ui2(X)Vi2 i = 1,2. [2.2]

Assuming, further, that the expected number of encounters
per individual is independent of its strategy, we also have

XUii + (1 - X)U21 = X

(note that the left side gives us the proportion of encounters in
which the second individual is of strategy Sj).

Abbreviation: ESS, evolutionary stable strategies.
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Hence, for x # 1

x(l - u11)

u= 1 -u [2.3]

1 - 2x + xull
U22 =

1 -x

(for x = 1, indeed ull = U= 1, u12 = U22 = 0).
Note that all encounter probabilities are given by x and ull

= u11(x). Payment function 2.2 can now be written as

V1(x) = V12 + (V11 - V12) u11 (x) [2.4]
V2(x) = V22 + (V21 - V22) I_X[1 -U(X)]

As a special case, if encounters are random, ull = x. There-
fore, u21 = x, u12 = U22= 1 - x, and [2.4] immediately becomes
[2.2].

In order to study the evolutionary kinetics of the frequency
x ofindividuals choosing strategy S1, we consider a transmission
model in which x is increasing or decreasing from one gener-
ation to the next in proportion to the expected success of an
individual choosing it at that specific generation. Thus, after one
generation,

XI xV1(x) fBx) [2.5]
xV1(x) + (1 - x)V2(x)

It can be shown that, in the special case of random encoun-
ters, the stable equilibria of transformation 2.5 are exactly the
ESSs ofthe population game determined by the payment matrix
IIViiII, as being defined by Maynard Smith and Price (1). Thus,
differentiating twice at the origin we see that x = 0 is a stable
equilibrium if and only if either

V12 < V22
or

VI, = V21 and V12> V22, [2.6]

condition becomes

V12 + (Vll - Vl2)ull(O) <V22. [2.7]

This is a sufficient condition for x = 0 being a generalized
ESS. A weak version of [2.7] is a necessary condition for it.
A similar condition is required for x = 1 being a generalized

ESS.
Iff(x) is an increasing function of x, and if neither x = 0 nor

x = 1 are generalized ESSs, then at least one (but maybe more)
mixed generalized ESS exists, satisfying the equation Vl(x) =
V2(x). An analysis ofmodels oftransmission more complex than
[2.5] for nonrandom encounters will not be given here.

For a complete description of nonrandom encounters one
might want to specify a matrix indicating the numbers of en-
counters of the four possible pairs of types. In order to simplify
the treatment, however, we concentrate on a model of nonran-
domness of encounters that requires only one parameter and
uses the shortcut often used in the analysis ofassortative mating.
We later suggest a further elaboration of this model which may
cover some aspects of active choice.
3. Nonrandomness of encounters imposed by
population structure
Simple cases of nonrandomness, imposed by population struc-
ture (for instance, in kin selection, group selection, and neigh-
bor effect) may be approximated by a law of encounters similar
to that used for assortative mating (6), which we will refer to as
"assortative meeting or (encounter)." The frequency of meet-
ings between individuals who both have strategy S1 is then

PI, = (1 - m)x2 + mx [3.1]

where m > 0 represents the portion of population that meets
an individual of the same strategy, and 1 - m meets randomly.
The probability that an individual practicing S1 is met by an-
other of its kind is

u11(x) = pi, = m + (1 - m)x.
x

From [3. la] and [2.3] we have

U22 = m + (1 - m)(1 - x).

[3. la]

[3.lb]
which is exactly the condition for x = 0 to be an ESS, as given
by Maynard Smith (2, 3) and Bishop and Cannings (4). This can
also be proven for an inner stable equilibrium, ifit exists. Trans-
formation function 2.5 corresponds to the simplest model of
transmission-e.g., genetic transmission in haploids and ver-
tical uniparental cultural transmission (5). However, in the case
of random encounters one can extend the validity of the result
to a wider class of transmission models, including one-locus n-
allele random mating model when the payment function is via-
bility (unpublished).

Extending definition 2.6 of evolutionary stability to nonran-
dom encounters, we again differentiate f(x) twice at x = 0 and
see that this equilibrium is stable if either

V1(O) < V2(0) [which meansJfO) < 1]

or

Vi(O) = V2(0) [f'(0) = 1] and

Vl(0) V2(0) - V1(0) V'(0) + [V2(0) - V1(0)]V1(0) < 0 [f'(°) < 0].

The above are the conditions under which an evolutionary strat-
egy is stable even if meetings are not random, and therefore we
will refer to it as "generalized ESS." By using [2.4], the first

Condition 2.6 for evolutionary stability of the fixation (x = 0)
of strategy S2 becomes

mV11 + (1 -m)Vl2 < V22 [3.2]

The inverse inequality is the condition for initial increase of
strategy S1.
We are now interested in discussing a special class of social

strategies whose evolutionary beginnings are difficult to explain
on the basis of standard ESS theory. We will concentrate on
strategies that we will call of the cooperative type. Strategy S1
will be called "cooperative" if its adoption by both participants
is more productive for both (V11 > V22) but its adoption by one
participant only is disadvantageous to the person adopting it
(V12 < V22)-i.e., it is better to be noncooperative if your op-
ponent is noncooperative. Thus, formally

V1l > V22 > V12 [3.3]

are the conditions for cooperativeness, in agreement with Ax-
elrod and Hamilton (7). Note that this definition includes, as
a special case, the situation V21 > V11 in which the chooser of
S, always loses and his companion always gains (namely, the case
of altruism) in agreement with Haldane (8) and Hamilton (9).

[3.2] shows that under random encounters (m = 0), the con-
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dition for initial increase of SI reduces to the classic ESS con-
dition V12 > V22, which is incompatible with [3.3], making the
initial increase of cooperativeness impossible but, as m in-
creases, the left side of [3.2] increases and tends to VI, as m
tends to 1, in which case the condition for initial increase of SI
tends to become VI, > V22 (which is part of our definition of
cooperativeness).
From [3.2] and [3.3] we get:
COROLLARY. For any situation ofcooperativeness (altruistic

or not) versus noncooperativeness, there are critical values 0
< m** < m* < 1 such that, ifm > m* (high rate of assort-
ment),full cooperativeness (x = 1) is the only ESS. Ifm < m**
(low assortment), fixation ofnoncooperativeness is also an ESS
and is the only one in the case of altruistic cooperativeness
(Table 1).
4. Cooperativeness and active choice of companions
Assortative meeting, passively imposed by the population struc-
ture (structural assortment), is always favorable for the evolution
ofcooperativeness. However, the evolution of cooperativeness
may be more likely when there is an active choice ofencounters
with one's own sort (selective assortment). For clarity, for the
purpose ofthis section we distinguish meetings and encounters,
the latter being a chosen subset ofthe first in which individuals
actually interact.
We assume at the start that every individual has a constant

number of meetings N > 1 (which may be random or with as-
sortment at rate m) and will choose an encounter with one of
them. A cooperative individual will always prefer another co-
operative individual among the N available candidates. As be-
fore, let ull(x) be the probability that a random individual, met
by an S1 individual, will be of the same type [with ull = m +
(1 - m) x for assortative meeting]. If this is the probability for
each ofthe N individuals met by such an individual and if these
meetings are independent, then the probability of finding at
least one cooperative individual is

f110 (x) = 1 - [1 -_u11(x)]N. [4.1]

Thus, u11 is the probability imposed by population structure,
fil(N) is the actively obtained one, and uf1(1) = u11 (i.e., uiq
stands for meeting and ut stands for encounter).

If, more generally, N is a random variable taking the value
k with probability P(N = k) = Pk (k= 1,2, ...) then

U11(X)(= > Pk (1 - [1 -U (X)]X)
k=1

= 1 - f+ [1 - u1u(x)], where [4.2]

+(s) =:Pks [4.3]
is the probability-generating function ofthe number ofavailable
candidates. (For models of active choice of mates, for compar-
ison see ref. 10.)

Table 1. Evolutionary fate of cooperative strategies as
influenced by assortment

High assortment Low assortment
(m > m*) (m < m**)

SI is altruism Fixation of S1 only Fixation of S2 only
(V21 > VI1) stable state stable state

SI is nonaltruistic Fixation of SI only Fixation of SI or S2
cooperativeness stable state both stable
(V21 < V11)

If the imposed encounter probability is due to assortative
meetings, then from [3. la] and [4.2]

Ull(x) = 1 - 4 (1 - M)( - x). [4.4]
Condition 2.6 for initial success ofthe cooperative strategy then
becomes

V11 + (V12 - V11) 4 (1 -M)i> V22. [4.5]
The following results are immediately obtained from [4.5].
(i) Ifm = 0, Condition 4.5 for initial success of cooperative-

ness becomes V12 > V22 and, therefore, it is never satisfied in-
dependently of the distribution of N.

If encounters are absolutely random, when a cooperative
type is very rare it is not likely to find another cooperative can-
didate even with active search for one among many candidates.

(ii) On the other hand, by inserting [4.4] into [2.4] and ex-
panding as a Taylor series of x, it is readily shown that, even for
a small (but not infinitesimally so) frequency of the cooperative
type in the population with absolutely random meetings (m =
0), the cooperative strategy becomes advantageous if the ex-
pected number of meetings E(N) per individual is large and
there is -active choice of cooperative companions.

i and ii together may be usefully restated also in the following
way. With m = 0 for any value of E(N) (which may be viewed
as a measure of selectivity of one's companion), a positive
threshold frequency x0> 0 of the cooperative type is needed
for it to become advantageous. Thus, it cannot be successful
from its very beginning. However, in infinite populations this
threshold becomes as small as we wish if E(N) is sufficiently
large, which means that in this case a relatively small frequency
of the cooperative type may be sufficient for its success. Thus,
in finite populations, high enough selectivity may permit initial
increase even in the absence of assortment imposed by popu-
lation structure.

(iii) Ifm is small but positive (the imposed chance ofa meeting
between individuals of the same strategy is slightly above ran-
dom), then by Taylor's expansion

4(1 - m) 1- mm'(1) = 1- mE(N)
where E(N) is the expected number of meetings per individual
and [4.5] becomes

E(N) >1 V22 - V12
m Vl-V12

[4.6]

Recalling that V1, > V22 > V12, the cooperative strategy will
be initially successful if and only if the expected number of
meetings per individual is larger than some critical value N*
which depends on V11, V12, and V22 and on m.

(iv) From the definition of cooperativeness, V12 < VI,, and
since 4 (s) as a generating function is always increasing, the left
side of [4.5] is an increasing function ofm. Thus, it follows from
ii that, for all 0 < m < 1, if E(N) is sufficiently high, coopera-
tiveness is successful from its very beginning.

(v) With all other parameters being equal, a high value ofE(N)
is typical of both high population density and high mobility of
individuals with it (10). Thus, quite surprisingly, condition 4.6
for initial success of the cooperative strategy is roughly the op-
posite ofmost conditions for the evolution ofaltruism, obtained
by group-selection models (11-14).

Note, however, that all these models are concerned with
altruism equally shared by all people of the same group as the
altruist. This is exactly the opposite of the assumption made in
this section. Weitherefore think it worth making a clear dis-
tinction between altruism in which there is, or is not, a choice
of companions-namely, between selective and nonselective
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altruisms. The same can be said for cooperativeness.
Remark: The results obtained so far assume that the number

of encounters per individual is constant. This is not the case in
certain social situations. For instance, there are behaviors that
make individuals gregarious, or solitary, which will affect the
number of meetings and encounters. The formalism above can
be extended to cover different numbers of encounters, if we
incorporate into the payment function V.1 the price of solitude
due to a failure of i to encounterj. For example, if two individ-
uals of type S2 are not able to interact at all, then V22 may stand
for the fitness of solitariness.
5. Co-evolution of assortment and cooperativeness
In the previous section we assumed that the number of indi-
viduals Nwhom one meets and from whom a companion is cho-
sen is constant or, more likely, is distributed according to a given
probabilistic law. We see that a selectively cooperative type is
always more successful whenever the number of meetings in-
creases. It is therefore reasonable to expect that a selectively
cooperative trait will evolve more easily if associated with some
other behavioral tendency that increases the individual's ability
for selective encounters.

In the same way it is possible that nonselectively cooperative
traits will evolve better when associated with behavioral
changes that, although not directly connected with coopera-
tiveness, affect the rate ofassortment. Lowering the individual's
mobility, a tendency to spend more time with the family, or a
preference for a less-attractive habitat are examples of such be-
havior. Adoption of such behavior may be favorable for the co-
operative type, especially when rare, even if it inflicts some
immediate cost. In such cases, a natural question is: What is the
rate m ofassortment resulting from some idiosyncratic behavior
that is most favorable for the evolution of cooperativeness, in
the sense of making. its initial increase most likely? If the cost
associated with a rate of assortment is G(m) where G(m) is any
convex function, then from [2.7] and [3.la] it follows that the
condition for initial increase of the cooperative is

aa. Assume that encounters that matter for this sort of coop-
erativeness occur only among sibs. If the frequency of the co-
operative type Aa in the parent population is e, then 2£ + O(e)
of all matings will be of type aa X Aa. Almost all cooperative
offspring are born to such a mating, and the probability that a
cooperative individual born in such a mating meets another
cooperative individual (sib) is m = 1/2. Thus

U11(e) = 2 + O(E)

From [2.4] the expected fitness of a cooperative offspring is

V1(E) = V12 + O(E)

which may be written as

V (O) =V11 + V12

The noncooperative fixation therefore is stable if and only if

V2> 2V1+ V12 [6.1]

Hence, although we have assumed V22> V12, the cooperative
strategy S, can still be successful from its very beginning if V22
< (V1l + V12)/2. This example of the effect of nonrandom en-
counter is exactly what is traditionally referred to as "kin
selection. "

Thus, for the simplest altruism model in which Aa always
gives up a proportion y > 0 of its fitness, thereby increasing
that of its companion by ( > 0 (17),

Vl = 1 - y+(3 V21 = 1 + v

V12 = 1 -

Here, condition 6.1 becomes

V22 = 1.

[mV11 + (1 -m) V12]- G(m) > V22.
Thus, there is a single value m with G'(m) = V11 - V12 that
maximizes the left side of [5.1] and is the optimal one for initial
increase of the cooperative type.

In the same way, the expected payment for the cooperative
type when in frequency x > 0 and when investing G(m) in as-

sortment is

V_(m)(X) = [m + (1 -m)x]Vll
+ (1 -m)( -x)V12- G(m). [5.2]

The value m(x) which maximizes this is readily calculated and,
at least for the nonaltruist, cooperation is shown to decrease
with x. When x = 1, no investment to increase assortment is
favorable for the cooperative type. Thus, some change in be-
havior increasing the rate ofassortment is shown to be favorable
for the cooperative type when rare and may be associated with
it. This is not the case when the cooperative type becomes
common.

A possible route for the evolution of a cooperative type may
thus be characterized by first taking over small or isolated hab-
itats, making it possible to have a large assortment, and then
invading the mainland (15).
6. A genetic example-first appearance of a dominant
cooperative allele due to sib selection
Consider a rare cooperative type Aa in a randomly mated dip-
loid population in which the common type is the noncooperative

which is the well-known Hamilton result, and in this case cor-

responds also to the condition for stability offixation of the self-
ish in the exact genetic model, as proved by Cavalli-Sforza and
Feldman (15). In the same way the assortative-meeting model
leads to the conditions 3P/4 and (3/4 for initial increases of a

dominant allele for sister-to-sister altruism in haplodiploid ge-
netic determination and for half-sib altruism in a diploid pop-
ulation. These results coincide again with the exact genetic
model (15, 16).
Discussion
In a recent paper, Axelrod and Hamilton (7) described a well-
known dilemma of a strategy that is advantageous to all partic-
ipants if they are inclined to accept it to start with but is disad-
vantageous to anybody adopting it on its own. They refer to it
as "cooperativeness," a term we use here, and ask about the
problem of its initial increase. By employing standard methods
of ESS, it is indeed shown that both fixation ofcooperativeness
and noncooperativeness are evolutionarily stable. Thus, the
natural question arises ofhow this cooperativeness can initially
increase. We find that the problem of the type discussed by
Axelrod and Hamilton disappears once one departs from the
standard assumption of random encounters, which is implicit
in current applications of the ESS method. Kin, deme, niche,
and' social group structure, neighbor effect, idiosyncratic be-
havior, and discrimination in the choice ofcompanions are some

of the possible sources of deviation from randomness that seem

[5.1] y > (3/2 [6.2]

Proc. Nad Acad. Sci. USA 79 (1982)



Proc. NatL Acad. Sci. USA 79 (1982) 1335

to us crucial for understanding evolutionary stability of social
structure.
The concept ofassortative encounters suggested in this paper

is aimed at integrating this factor into the theory of ESS. The
problem described by Axelrod and Hamilton (7) exists only for
too-low rates of assortment. We find that fixation of the non-
cooperative types ceases to be evolutionarily stable once the
rate ofassortment exceeds a given threshold value. In this work
we distinguish between two modes ofassortment, structural and
selective, the first resulting from the social population structure
because ofstratifications ofkin, deme, social group, niche, class,
caste, colony, etc., and the second, due to active choice ofcom-
panions. They can coexist.
We introduced an example ofhow the ESS method modified

by the introduction ofstructural assortment can explain the ini-
tial increase of altruism versus sibs, a classical kin-selection
problem, but the method can also be applied to other situations
in which a family structure is less obvious. Thus, Axelrod and
Hamilton's suggestion (7) that initial progress of a cooperative
trait may be due to some sort ofkin selection can be stated more
safely in the more general terms of structurally assorted en-
counters. Note, however, that this method (like inclusive fit-
ness) cannot give conclusions as precise as those obtainable with
exact genetic models.
The possibility of selective assortment, however, may have

effects that are shown to be qualitatively different from those
achieved by methods of kin selection, group selection, etc.,
which generate the structural assortment. We do not attempt
to exemplify the existence of social selectivity among animals.
We note, however, that there is likely to be so much evolu-

tionary feedback between selectivity and cooperativeness that
the possibility ofco-evolution emerges naturally. In the general
case, arguments of assortative meeting can serve only as first
approximations to an exact genetic model. They need not co-
incide with it-for example, when applied to interior (poly-
morphic) equilibria.

We thank M. W. Feldman and R. Lewontin for helpful remarks on
the manuscript.
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