SUPPORTIG INFORMATION

The antisense RNA As1_flv4 in the cyanobacterium *Synechocystis* sp. PCC 6803 prevents premature expression of the *flv4-2* operon upon shift in inorganic carbon supply*

Marion Eisenhut^{1#}, Jens Georg², Stephan Klähn², Isamu Sakurai¹, Henna Mustila¹, Pengpeng Zhang¹, Wolfgang R. Hess², and Eva-Mari Aro^{1§}

¹Department of Biochemistry and Food Science, Plant Physiology and Molecular Biology, University of Turku, Finland ²Faculty of Biology, University of Freiburg, Germany

*Running title: Effects of an asRNA on expression in Synechocystis

[§]To whom correspondence should be adressed: Eva-Mari Aro, Department of Biochemistry and Food Science, Plant Physiology and Molecular Biology, University of Turku, Finland, Tel.: + 358 2 333 5931; Fax: + 358 2 333 5549; E-Mail: evaaro@utu.fi

[#] Present address: Institute of Plant Biochemistry, Heinrich-Heine Universität Düsseldorf, Germany

Name	Sequence (5`-> 3`)	Experiment
T7_as1_flv4_fw	TAA TAC GAC TCA CTA TAG GGA	Northern Hybridization,
	GAA AGC GGG GGA GGA CAG	Probe to detect As1_flv4
	GAT GAG	
as1_flv4_rev	GTA CCC GCT TCA CGG CAA AGC	Northern Hybridization,
	TGA	Probe to detect As1_flv4
T7 as2 flv4 fw	TAA TAC GAC TCA CTA TAG GGA	Northern Hybridization
	ACC GAC CTT TTG AGT CAC AGA	Probe to detect As2 flv4
	TTG	
as2 flv4 rev	GTC GTT CTG GCG TTT CAT CGA	Northern Hybridization,
	ААА	Probe to detect As2 flv4
T7 as flv2 fw	TAA TAC GAC TCA CTA TAG GGA	– Northern Hybridization,
	CAC TGG ATC AGT TTG ATC CGT	Probe to detect As flv2
	ТАА	_
as_flv2_rev	CTG GCT AGG TTG TTG TTG ACA	Northern Hybridization,
	CCA	Probe to detect As_flv2
T7_ncr0080_fw	TAA TAC GAC TCA CTA TAG GGA	Northern Hybridization,
	AGT TCG TGG GCA AGA TGG AGC	Probe to detect Ncr0080
	CAC	
ncr0080_rev	CAG TCA ACT TAA TCT ATC GAG	Northern Hybridization,
	AGG GCT CTA TGG C	Probe to detect Ncr0080
flv4_fw	CCA GTA CCT CAC CCA GAA ACA	Northern Hybridization,
		Probe to detect <i>flv4-2</i>
		(Zhang et al., 2009)
flv4_rev	AAG CTA GGG TTT CCA ACA GGA	Northern Hybridization,
		Probe to detect <i>flv4-2</i>
		(Zhang et al., 2009)
5'-RNA Adaptor-sense_F	GAA TTC CTG TAG AAC GAA CAC	5`RACE
	TAG	
flv4_5`RACE_1	GGA TTA AAA ATG AGT TGT AGG	5'RACE (1. PCR)
	TTG	
flv4_5`RACE_2	ATG GCG TAA CTC AAA CTC AAT	5'RACE (2. PCR)
as1_flv4_prom_fw	<u>GGT ACC</u> AGA TAA GCT AGG GTT TCC	Promoter- <i>luxAB</i> fusion

SUPPLEMENTAL TABLE **TABLE S1:** Primer used in this work. Restriction sites are underlined.

		(Segregation)
spK_seg_rev	CAATTTTCCTTCAGCGGCGTTGAG	Mutagenesis
	TC	(Segregation)
spK_seg_for	GATCGATGCCATTGAAGCGGAAA	Mutagenesis
	GACAGTACGATG	
as_flv4_asuII_rev	GAATTCGAATTTCCCATTGGCTTG	Mutagenesis
	CCAGTGCTGAGGCGACCGATC	
as_flv4_asuII_for	GAA TTCGAA	Mutagenesis
	TATTATGGGAGGCGGTC	
	GGCGGCAACCGAGCG <u>TTCGAA</u> GG	
3'petJ_AsuII_oop_salI	GAA <u>GTCGAC</u> AATAAAAAACGCCC	Mutagenesis
	<u>CAACTGATTAATC</u>	
5' ApaI_petJ	GAA <u>GGGCCCGGGAATTGCTCTGG</u>	Mutagenesis
	TTT	
flv4-2_prom_rev	<u>GGT ACC</u> AGA AAA CTT TGT GGT	Promoter-luxAB fusion
	GGT TAA AGT	
flv4-2_prom_fw	<u>GGT ACC</u> ACA ACC AGT TGG AAT	Promoter-luxAB fusion
	CCG	
as1_flv4_prom_rev	<u>GGT ACC</u> GAC TGT ATA TTT TAA	Promoter-luxAB fusion

SUPPLEMENTAL FIGURE LEGENDS

FIGURE S1: Artificial modulation of asRNA As1_flv4 levels. A. Cloning strategy for fusion of *as1_flv4* gene with *petJ* promoter and integration into the *spkA* gene. For further explanation see Experimental procedures. B) Verification of overexpression of As1_flv4 in the overexpression strains As1_flv4[+]/2 and As1_flv4[+]/3. Accumulation of As1_flv4 transcript was measured 24 and 46 h after induction of heterologous expression by diminishing Cu²⁺ from the medium. As loading control *rnpB* was used.

FIGURE S2: Effect of changing C_i levels on accumulation of asRNA As1_flv4 transcript and proteins encoded by the *flv4-2* operon. *Synechocystis* WT cells were pre-cultivated under HC conditions, shifted to LC for 24 h, and then shifted back to HC conditions. Samples were collected 0, 1, 3, 4.5, 6, 12, and 24 h after each shift. A. Results of blotting experiments. 5S rRNA and AtpB were used as loading controls for RNA and protein, respectively. B. Quantification of signal intensities. The strongest signal intensity for each probe was set to 100% and the other signal intensities were related accordingly. Shown are the results of one representative experiment.

FIGURE S3: Impact of loss of the transcriptional regulator NdhR on the LC-induced expression of the asRNA As1_flv4 and the *flv4-2* operon. A. Accumulation of transcripts and proteins in WT and $\Delta ndhR$ after LC shift. B. Activity of the *flv4-2* promoter in WT (WT-P_{flv4-2}) and $\Delta ndhR$ ($\Delta ndhR$ -P_{flv4-2}) after LC shift. Strains were generated, verified and treated as described in Experimental procedures. Each sample was measured in triplicates. Given are the means and SD of triplicates of a representative time course.

Figure S1

Α

Figure S2

Α

В

Figure S3

Α

В

