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ANGLES 

Bond-angle potential restrains the angle θ between three particles (say, i, j and k) 

near an equilibrium value. In molecular mechanics force field like OPLS-AAL1 such a 

potential is defined as a spring in angular space: 

Uang θ( )= kang θ −θeq( )2                                                           (1) 

Here, kang is the spring constant and θeq is the equilibrium angle. Given the Cartesian 

coordinates of three particles, the angle is computed in MD simulations as: 
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= arccos cos θ( )                                              (2) 

Here, the vectors 
 

r
rij and 

 

r
rjk  connect particle j to the other two particles. The bond-

angle potential used in MD is then slightly different from Eq. 1: 

Uang θMD( )= kang θMD −θeq( )2 = kang arccos cos θ( )  −θeq{ }2                        (3) 

The inverse function arccosine is defined in the set [0,π]. Therefore, only in this set 

are the potentials in Eq. 1 and in Eq. 3 the same. Figure 1 shows the bond-angle 

potential (Eq. 1) in blue and the one that we use in MD (Eq. 3) in red.  

 

FIGURE 1 

 
Figure 1: The bond-angle potential (Eq.1) is reported in blue, while the potential obtained in 

MD (Eq.3) is reported in red. The equilibrium value (θeq=1.941) and the spring constant 



(kang=80kcal/mol) are those for the N-Cαααα-C backbone angle in OPLS-AAL force field1. The figure 

was made with Mathematica2. 

 

It is clear that if the angle θ exits the range [0,π] in a MD simulation, we will 

encounter problems. The derivative of the potential in Eq. 1 is: 

 
dUang θ( )
dθ

= 2kang θ −θeq( )                                                       (4) 

In MD, according with Eq. 2, we actually compute: 

dUang θMD( )
dθMD

= 2kang θMD −θeq( )= 2kang arccos cos θ( )  −θeq{ }                     (5). 

Figure 2 reports the derivative of the potential in Eq.4 in blue, and the derivative of 

the potential in Eq. 5 in red.  

 

FIGURE 2 

 
Figure 2: The derivative of the bond-angle potential (Eq.4) is reported in blue, while the 

derivative of the potential obtained in MD (Eq.5) is reported in red. The equilibrium value 

(θeq=1.941) and the spring constant (kang=80kcal/mol) are those for the N-Cαααα-C backbone 

angle in OPLS-AAL force field1. The figure was made with Mathematica2. 

 

The function in Eq. 5 is continuous in θ=0 and in θ=π, but it has the wrong sign in 

θ<0 and θ>π. While, indeed, the potential in Eq. 3 is increasing (decreasing) for θ<0 

(θ>π) (see Fig. 1), the derivative that we compute is negative (positive) for θ<0 

(θ>π) (see Fig. 2). This will make the sign of the force opposite to the correct one 

outside the range [0,π]. Our energy (and so free energy) calculation is then going to 

be inconsistent with the forces governing the evolution (and so the sampling) of 

configurations. 

In a regular MD simulation at 300K, the spring constant is stiff enough to restrain 

the fluctuations of the angle within the range of a few degrees. The problem just 

highlighted is never encountered, since the energy barrier to reach the 

configurations θ<0 and θ>π is too high to overcome. 

In an alchemical substitution, the potential in Eq. 1 (or Eq. 3) is multiplied by the 

switching parameter λ. The effective spring constant is then weakened, and the 

lower the value of λ the larger is the angular space that can be sampled. Eventually, 

the energy barrier to reach the configurations θ<0 and θ>π will be so low that such 



configurations may actually be sampled. Therefore, we need to find a way to 

restrain the angle between three particles such that if annihilated by alchemical 

methods is well behaved at θ<0 and θ>π. 

The solution that we propose is to use Urey-Bradley bonds to restrain the angle 

around the equilibrium value for all those angles that are going to be annihilated 

along the alchemical pathway (e.g. the angles that connect the protein to the 

mutated part). Given the three particles i, j and k, the Urey-Bradley bond restrains 

the fluctuations of θ around the equilibrium angle by adding a spring in Cartesian 

space between particles i and k: 

UUB rik( )= kUB rik − rik ,eq( )2                                                     (6) 

Here, of course 

rik = rjk
2 + rij

2 − 2rjkrij cos θ( )                                                  (7) 

The two parameters rik,eq and θeq are chosen such that the minimum of the potential 

corresponds to the equilibrium position according to bond-angle potential and the 

small fluctuations around the minimum are the same. Therefore, we obtain: 
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2 + rij ,eq

2 − 2rjk,eqrij ,eq cos θeq( )                                        (8) 
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The choice of the alchemical pathway to annihilate/create the Urey-Bradley bonds is 

arbitrary. Therefore, we select a scheme (and a particular λ-scaling) such that the 

free energy difference is computed numerically with higher accuracy. For this 

purpose, we consider a “toy” problem in which we can evaluate the free energy 

analytically. We compute the free energy difference due to the annihilation of a 

Urey-Bradley bond for a triatomic molecule. The alchemical potential of such simple 

system is given by two chemical bonds and a Urey-Bradley bond scaled by the 

switching parameter. The parameter α is the target for optimization: 

U r,r ',rUB;λ( )= k r − req( )2 + k ' r '− r 'eq( )2 + λαkUB rUB − rUB,eq( )2               (10) 

The configurational partition function for this potential is3: 

Z N,V ,T ;λ( )= 8π 2V r2r '2 sin θ( )exp −βU r,r ',rUB;λ( ) dr dr 'dθ∫           (11) 

Here, we changed the coordinates to a polar system and integrated the external 

degrees of freedom. Let us make the assumption that the spring constant for the 

chemical bond is so stiff that in the Jacobian in Eq. 11 and in the Urey-Bradley bond 

(see Eq. 7) the bond lengths r and r’ can be substituted by their equilibrium values. 

This yields: 

Z N ,V ,T ;λ( )= 8π 2Vreq
2 r 'eq

2 2π
kβ

2π
k 'β

sin θ( )exp −βλα rUB − rUB,eq( )2




dθ∫       (12) 

Let us further assume that k=k’, req=r’eq and that θeq=0. In this case the Urey-Bradley 

potential is (see Eq. 6-8): 



 UUB θ( )= 2kUBreq2 1− cos θ( )                                              (13). 

The free energy difference computed by TI is: 

∂F

∂λ
=

∂U

∂λ λ

= 2αλα −1kUBreq
2
sin θ( ) 1− cos θ( ) exp −2βλαkUBreq

2 1− cos θ( ) { }dθ∫
sin θ( )exp −2βλαkUBreq

2 1− cos θ( ) { }dθ∫
  (14) 

The integral can be solved numerically as a function of λ using Mathematica2. With 

α=1 we get the blue line in Fig. 3, with α=2 the red line.  

 

FIGURE 3 

 
Figure 3: The derivative of the alchemical free energy with respect to λλλλ (Eq. 14) is reported. In 

blue we show αααα=1, and in red αααα=2. The rest of the parameters are: req=1Å, kUB=75 kcal/mol/ Å2 

and ββββ=0.6 kcal/mol. The figure was made with Mathematica2. 

  

We noticed (unpublished results) that the larger relative errors in the evaluation of 

dF/dλ are found when λ approaches 0. A possible rationale is that the closer the 

system is to the decoupling point, the larger is the configurational space to sample. 

To reduce the impact of these terms on the overall free energy difference, we would 

like dF/dλ to be small at λ≅0. Therefore, we adopted α=2 in our simulations.  

 

 

TORSIONS 

Given four particles (say, i, j, k and l), the torsion potential restrains the dihedral 

angle φ between the plane identified by the particles i, j and k and the plane 

identified by the particles j, k and l (see Fig. 4). The functional form used in 

molecular mechanics force fields is periodic in the angle and does not suffer the 

same problems as the angular potential. On the other hand, if the weakening of the 

angular interaction allows particle l to collapse over particle j, the plane identified 

by the particles j, k and l is not defined, and so the dihedral angle itself is not 

defined. To avoid this issue it is enough to remove torsions and improper torsions 

before the angles. 

 

 



 

 

FIGURE 4 

 
Figure 4: An example of torsion dihedral φ is reported.  



 

 

 

 

 

Free energy contribution of substituting angular 

potential with Urey-Bradley potential. 
 

In the thermodynamic cycle that we compute, we remove some angular interactions 

from ILE sidechain analog (between “P” and “N” particles) and create some angular 

interactions in GLN sidechain analog (between “P” and “M” particles) in water. Then 

we do the opposite in vacuum. The list of the angles that are substituted (i.e. 

removed or created) is reported in the following Table. 

 

TABLE 1 

 

Created/annihilated angles in ILE side 

chain analog 

Created/annihilated angles in GLN side 

chain analog 

P N P M 

HS1 CS CI1 HS1 CS CQ1 

HS2 CS CI1 HS2 CS CQ1 

HS3 CS CI1 HS3 CS CQ1 

CS CI1 HI11 CS CQ1 HQ11 

CS CI1 HI12 CS CQ1 HQ12 

CS CI1 CI2 CS CQ1 CQ2 
Table 1: This table reports the list of angles that are removed/created in the mutations in Fig. 2 of the 

main text (horizontal arrows). These are all the angles that include “P” and “N” particles or “P” and “M” 

particles. The names of the atoms can be found in a molecular sketch in Fig. 3 of the main text.  

 

As already stated, it is convenient to remove/add Urey-Bradley bonds instead of 

regular angular interactions. Clearly, the free energy difference of 

removing/creating Urey-Bradley bonds is different from the free energy difference 

of removing/creating bond angle interactions since the functions are different. 

According to our protocol as discussed in Table 1 and Table 2, the mutation 

simulations (horizontal arrows in Fig. 2 of main text) use Urey-Bradley bonds. In the 

simulations of aqueous solutions (vertical arrows in Fig. 2 of main text) the 

sampling of configurations was performed according to the regular bond-angle 

potential. Therefore, we need to correct the free energy for the use of different 

functional forms. Potential switches occur at the four corners of Fig. 2 of the main 

text. In the top left corner we change from the regular angular potential to the Urey-

Bradley potential for all the substituted angles in ILE sidechain analog (Table 1). 

This free energy difference is defined ∆FI ,solv
A→UB . We then reach the top right corner 

with a Urey-Bradley potential for the substituted angles in GLN sidechain analog 

(Table 1), so we need to compute the free energy difference of removing them and 



creating the regular angular potential. We refer to this term as −∆FQ,solv
A→UB . In the 

bottom right corner of Fig. 2 in the main text we have regular bond-angle potential, 

but the mutation is performed according to Urey-Bradley terms. Therefore we need 

to compute the free energy difference of substituting the regular bond angle term to 

Urey-Bradley terms for all the substituted angles in GLN sidechain analog in vacuum 

(Table 1). We refer to this term as ∆FQ
A→UB . Finally, in the bottom left corner of Fig. 2 

of the main text all the substituted angles in ILE sidechain analog (Table 1) are 

described according to a Urey-Bradley potential, but in the solvated part we use the 

regular bond-angle term. The free energy difference of performing this substitution 

in vacuum is −∆FI
A→UB . Overall, the total correction to the cycle due to our 

inconsistent use of different angle potentials is: 

 
dFA→UB—∫ = ∆FI ,solv

A→UB − ∆FI
A→UB − ∆FQ,solv

A→UB + ∆FQ
A→UB

                    
(15) 

Each free energy difference in equation (18) was computed using the Bennett 

Acceptance Ratio (BAR) method4. According to this method, the free energy 

difference associated with our change in the force field is computed using the 

following formula: 

∆FA→UB = −kBT ln

1

1+ exp β UUB −UA − C( )  A

1

1+ exp −β UUB −UA − C( )  UB

+ C
                                    

(16) 

Here, UA represents the angular potential for all those angles that are alchemically 

removed (see Table 1), UUB is instead the potential for the Urey-Bradley bond that 

substitutes the regular angular potential. The symbol ...
A

refers to an average 

performed over an ensemble of structures sampled when the angular potential is 

used. The symbol ...
UB

refers to an average performed over an ensemble of 

structures sampled when the Urey-Bradley bonds are used. The value of C is 

determined according to the following formula: 

C = ∆FA→UB + kBT ln
nUB

nA
                                                  (17) 

where nUB is the number of structures in the sample performed with the Urey-

Bradley bonds, and nA is the number of structures in the sample performed with the 

regular angular potential. The two equations 16 and 17 can be used iteratively to 

obtain the value of the free energy difference.  

The computation of the variance of the free energy associated with BAR method was 

performed according to the following formula4,5: 
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                                   (18) 

The simulations are carried out using the same systems as those of the alchemical 

substitutions (see text for further details). All the simulations were 2ns long. The 

results are in the following table: 

 

Table 2 

ΔFI,solv
A->UB (0.1421±0.0088)kcal/mol 

ΔFI
A->UB (0.2007±0.0047)kcal/mol 

ΔFQ,solv
A->UB (0.1505±0.0010)kcal/mol 

ΔFQ
A->UAB (0.2038±0.0048)kcal/Mol 

Table 2: The results of the free energy difference upon substitution of the regular angular interactions 

with the Urey-Bradley interactions are reported with their errors.   
 

Hence the free energy of changing the potential of the angles between the fragment 

and the molecule from the regular bond angle potential to the Urey-Bradley 

potential is small for each individual term. In the context of a comparison with 

experiment it is one order of magnitude smaller than the expected systematic errors 

(~1-2kcal/mol in the case of ligand binding6). In the present context of testing 

numerical accuracy we exploit our knowledge that the entire cycle must be zero. 

Therefore, we consider only the contribution to the entire cycle. According to Eq. 15 

this number is:  

 
dFA→UB—∫ = ∆FI ,solv

A→UB − ∆FI
A→UB − ∆FQ ,solv

A→UB + ∆FQ
A→UB = −0.005 ± 0.011( )kcal / mol

 (19)                                          

It turns out that this correction due to the changes of the angular potential is 

negligible. 
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