SUPPLEMENTAL FIGURES

Figure S1 Use of IGHV mutation status to stratify patient samples. Survival curves on

SC—TX for the 17 European patients (A) or for the patient cohort in Friedman et al (2009) (B).

Figure S2 Detection of known disease genes with cancer susceptibility. The enrichment of
disease genes is shown for the 38 subnetworks or top 230 genes selected from the 130 patients
from UCSD, or for random subnetworks of the same size as the identified 38 subnetworks, but
without regard to the expression profiles. Bars chart the percentage of disease genes among all
genes covered in the markers. Numbers above the bars are the hypergeometric P-values of

enrichment.

Figure S3 Schematic overview of subnetwork identification. Protein interaction networks are
used to assign sets of genes to discrete subnetworks. Gene expression profiles of tissue samples
are transformed into a “subnetwork activity matrix”. For a given subnetwork My in the
interaction network, the activity is a combined z-score derived from the expression of its
individual genes. After overlaying the expression vector of each gene on its corresponding
protein in the interaction network, subnetworks with discriminative activities are found via a
greedy search. Significant subnetworks are selected based on null distributions estimated from
permuted subnetworks. Subnetworks are then used to identify disease genes, and the subnetwork

activity matrix is used to train a classifier for prognosis of newly diagnosed patients.



Figure S4 Enriched biological processes in the significantly predictive subnetowrks. The 38
subnetworks are enriched for proteins functioning in a common biological function as annotated
by Gene Ontology database (hypergeometric test with a false discovery rate of 5%). Enriched

terms from the Biological Process category, are depicted in the top.
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Figure S4
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SUPPLEMENTAL METHODS

Selecting significant subnetworks. To assess the significance of the identified subnetworks,
Ms, three tests of significance are performed. For the first test, we perform the same search
procedure over 100 random trials in which the expression vectors of individual genes are
randomly permuted on the network. Such permutation disrupts the correlation between
expression and interaction. The score S(M), —log p-value of a %2 test on a Cox proportional
hazard model on T, of each real subnetwork is indexed on the 'global’ null distribution of all
random subnetwork scores. The second test indexes each real subnetwork score on a 'local’ null
distribution, estimated from the S(M) scores of 100 random subnetworks initialized from the
same seed protein as the real subnetwork. Third, we test whether S(M) of a Cox proportional
hazard model on real T is stronger than that obtained with random assignments of T to patients.
For the random model, these assignments are permuted in 20,000 trials, yielding a null
distribution of mutual information scores for each trial; the real score of each subnetwork is
indexed on this null distribution. In this study, significant subnetworks are selected that satisfy
all three tests with P;<0.05, P,<0.05, and P3<0.00005, according to the three different null

distributions of S(M).



DNA primers for Real time PCR in serial gene expression experiments

1. TCEB3
Forward 5’- TTTGCCAGGGACCTAGTGG -3’
Reverse 5’- CGCTTTCGGGAATTGCTCT -3’
2. MED9
Forward 5’- CCTTTGGTTCACAACATCATCAA -3’
Reverse 5’- CTGGAACTTGCTTTTGAGGG -3’
3. CEBPA
Forward 5’- CCACGCCTGTCCTTAGAAAG -3’
Reverse 5’- CCCTCCACCTTCATGTAGAAC -3’
4. CEBPB
Forward 5’- GGCCCTGAGTAATCGCTTAAAG -3’
Reverse 5’- TCCCAAAATATACAGACGCCTC -3’
5. CSPG6
Forward 5’- CCCCAGGAAGCATTTGAAAAG -3’
Reverse 5’- CTGCTCGGAGAAATTTACAAACTG -3’
6. PFTK1
Forward 5’- TGGCCTGGAGTTCATTCTTTAC -3’

Reverse 5'- AACATTGTAGGAGCTTGGAGG -3’




7. ACVR1

Forward 5’- GAAGATATGAGGAAGGTAGTCTGTG -3’
Reverse 5’- AGTGCTGTGAGTCTTGCG -3’
8. FKBP4
Forward 5’- CAATATGTTTGAGAGGCTGGC -3’
Reverse 5’- CTATGCTTCTGTCTCCACCTG -3’
9. DYNLL1
Forward 5’- ACATAGAGAAGGACATTGCGG -3’
Reverse 5’- GCCCAGGTAGAAGTAGATGAAG -3’
10. SMAD2
Forward 5’- GCCGTCTATCAGCTAACTAGAATG -3’
Reverse 5’- TTTGTCCAACCACTGTAGAGG -3’
11. IRAK2
Forward 5’- AAGCGAGTGGACATCTTCAG -3’
Reverse 5’- CTGCTTGGAATATCACTGAGGA -3’
12. SUPT3H
Forward 5’- ATTTCGAGACTGGTTGGACTG -3’
Reverse 5’- GGTTACCATGTCTTGCCTCAC -3’
13. CSNK2A1
Forward 5’- TTCAGTGCCAACCCCTTC -3’

Reverse 5’- AGGCATCAGGAGACAGATAGG

-3’




14. SKP2

Forward 5’- CCAACACCTATCACTCAGTCG -3’

Reverse 5’- TCTGTATGTTTGAGGGCATCC -3’
15. CDC26

Forward 5’- GACGGAAACCAACACGCCTA -3’

Reverse 5’- GCCTCCTACAACTTCCACATC -3’
16. TNFRSF7

Forward 5’- GCTCCGATTTTATTCGCATCC -3’

Reverse 5’- TGTAACGACAAGGCTCTGC -3’
17. MCP

Forward 5’- CCTCCATCTAGTACAAAACCTCC -3’

Reverse 5’- CACAGCAATGACCCAAACATC -3’
18. DMD

Forward 5’- AGAAATACCCCTGGAAAGCC -3’

Reverse 5’- TTCTGCTCCTTCTTCATCTGTC -3’
19. CCT4

Forward 5’- CAGAACTAAGAAACCGGCATG -3’

Reverse 5’- TCAGTTGCAAGAGTCAGAGC -3’
20. CCT7

Forward 5’- ATGCCCACACCAGTTATCCTA -3’

Reverse 5’- CAGGGTAGTTCTTACAGCCTCA -3’




21. CREB3

Forward 5’-

CCTTGTACCTGCTATGTACTCC

-3’

Reverse 5’-

TCTTTCGGCACTTCTGACTG

-3’
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