
Proc. Natl Acad. Sci. USA
Vol. 79, pp. 2091-2095, March 1982
Neurobiology

Selective networks capable of representative transformations,
limited generalizations, and associative memory

(neural net/selection theory/feature detection/parallel circuit/memory)

GERALD M. EDELMAN AND GEORGE N. REEKE, JR.
The Rockefeller University, 1230 York Avenue, New York, New York 10021

Contributed by Gerald M. Edelman, December 7, 1981

ABSTRACT Two parallel sets of selective networks composed
of intercommunicating neuron-like elements have been connected
to produce a new kind ofautomaton capable oflimited recognition
oftwo-dimensional patterns. Salient features ofthis automaton are
(i) preestablished unchanging connectivity, (ii) preassigned con-
nection strengths that are selectively altered according to expe-
rience, (iii) local feature detection in one network with simulta-
neous global feature correlation in the other, and (iv) reentrant
interactions between the two networks to generate a new function,
associative memory. No forced learning, explicit semantic rules,
or a priori instructions are used.

The central problem of neurobiology is to describe how assem-
blies of neurons connected in networks can mediate a variety
of behavioral responses in a fashion adaptive for the organism.
The most challenging forms ofthis problem are posed by higher
brain functions such as perception, learning, or problem solving
under novel conditions-i.e., situations in which both classi-
fication and generalization play a significant role. According to
the group-selection theory (1, 2), these higher brain functions
are mediated by selection from degenerate repertoires ofneural
networks that are formed during ontogeny and do not alter in
connectivity thereafter. During later experience, selection oc-
curs by differential amplification or diminution of synaptic con-
nection strengths within and between groups ofneurons whose
preestablished connectivities allow them to respond adaptively
to a given input. According to the theory, reentry of outputs
from one set ofnetworks to other preceding or parallel networks
makes possible spatiotemporal correlations of features from
representations ofthe same object in different networks. Reen-
try permits the system to deal with both individual and invariant
aspects of stimuli drawn from the same or different classes (1).
The group-selection theory makes explicit predictions (1, 2)

that can be tested. However, quite independent of the falsifi-
ability of this theory is the question of its self-consistency: Can
a prewired network or congeries ofnetworks based on selective
principles and reentry respond stably and adaptively to struc-
tured inputs to yield both pattern recognition and association
without prior instructions, explicit semantic rules, or forced
learning? In the present paper, we answer this question affirm-
atively by describing in a preliminary fashion the structure and
performance of a probabilistic automaton ("Darwin II") made
up ofselective networks. This description is illustrative and does
not include a formal assessment of the performance limits ofthe
automaton.

OVERALL SYSTEM DESIGN
For convenience in design and testing, Darwin II was simulated
on a digital computer (an IBM 3033). The automaton consists

ofan input array on which two-dimensional patterns can be rep-
resented, an assembly of interconnected networks or reper-
toires of recognizing elements that transform input patterns,
and an arrangement for coupling these networks to as yet un-
specified motor-output functions. Patterns represented on the
input array are centrally fixed and scaled to a standard size;
mechanisms for detection of motion and for development of
translational and scale invariance are essential in real visual sys-
tems but have not yet been provided in the automaton. Each
recognizing element, called a "group" (Fig. 1), formally rep-
resents a connected assembly ofneuron-like units, although the
connections of such units within a group are not specified.
Groups have multiple inputs that may come variously from the
input array or from the outputs ofgroups in the same or different
repertoires. The state of each group is characterized by a single
time-dependent scalar variable, s, that is determined from the
inputs and past history of that group according to a nonlinear
response function.

si(t) = CS - 01E) - 13(Sk - O,) + N + wsi(t - 1),
j k

[1]

where si(t) = state of the ith group at time t; cam = connection
strength ofjth input to group i (cut > 0, excitatory; cut < 0, inhibi-
tory); so. = state of the group specified by lij (i.e., of the group
connected to the jth input of group i); OE excitatory input
threshold (only inputs with sl 2 0E are included); f = a fixed
inhibition coefficient; Sk = state of group defined by k, which
ranges over all groups within a specified inhibitory neighbor-
hood around group i; 0, = inhibitory input threshold (only in-
puts with Sk 2_O are included); N = noise drawn from a normal
distribution with chosen mean and SD; and w = persistence
parameter (w = e-17, where Tis a characteristic time constant).
The first and second term of the response function are ignored
unless their sum exceeds a positive firing threshold (Op) or is less
than a negative inhibitory threshold (ON). (Provision is also made
for groups to have a refractory period following suprathreshold
excitation.) The number of groups in each repertoire and the
number of connections to each group can be varied at will; a
maximum of -106 connections, distributed in any way among
the various repertoires, is permitted by the available computer
memory.
The amplification function, which is designed to alter the

"synaptic strength", cij, ofa connection according to the activity
of the pre- and post-synaptic groups, is

cij(t + 1) = C1,(t) + &4(C )y(si - 0MI))(s,, oM,)' [2]

where 8 = amplification factor (0 ' 8 < 1); +(c) = saturation
factor to prevent [cijI from becoming larger than 1 [+(c) =
1 + 2c2 - C if C'(Si- OM1).(Sj - OM) > 0; O(C) = 1 if C(Si -
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FIG. 1. Structureandfunctionof agroup. Inputs, shown atthe left,
are specified by a connectivity matrix that can range over any groups
in the system (upper left) or by a geometric rule for lateral inhibition
by neighboring groups (lower left). These inputs are combined with
spontaneous activity or "noise" and with persisting activity from ear-
lier times according to Eq. 1.

OMI)-(sj-OM) 60; and Om,, Om = amplification thresholds for
postsynaptic groups, i, and for presynaptic groups, j]. A total
of 34 = 81 amplification rules can be constructed by taking 8
to be positive, negative, or zero according to whether si and sj
are greater than or less than the thresholds OMi and oMj' re-
spectively. (In terms of real neuronal function, only a few of
these would be sensible. In most of the examples in this paper,
8 was zero if si ' 0Ml and sj c Om; otherwise 8 was positive.)

Darwin II is modeled on the group-selection theory (1). Ac-
cordingly, the connectivity and connection strengths of each
group, and hence the range of input patterns to which it can
respond, are established when the group is constructed, prior
to the presentation of any inputs. The connectivity remains
unchanged throughout a particular instantiation of the model
and is not used to embody predetermined information for re-
cognizing particular stimulus objects; the connection strengths
change continually in accord with an amplification function (Eq.
2) that ensures group selection. When a group responds to a
particular stimulus, that response is differentially strengthened
so that the same group is more likely to respond to future pre-
sentations of the same or similar stimuli. More than one group
can respond at some level to a given input and certain groups
may respond above threshold to two or more different inputs.
This overlapping degeneracy (1) of groups in a repertoire en-
sures that there will be at least some response to any stimulus.

Repertoire Construction and Connectivity. In its current
form, Darwin II has two parallel sets ofnetworks, named "Dar-
win" and "Wallace" for convenience, that comprise six reper-
toires in all (Fig. 2). Darwin (Fig. 2 Left) transforms each pattern
presented on the input array into a distinct and stable selected
output representation. It consists of R, a local feature-recog-
nizing network that extracts salient aspects of the stimulus ob-
ject, of R-of-R ("recognizer of recognizers"), a randomly orga-
nized abstractor, and of Rrepq an output or reporter network
designed to sample the activity ofR-of-R. Wallace (Fig. 2 Right)
is concerned with limited generalization and produces relatively
invariant output patterns for all members ofa given class ofinput
objects. It consists of (i) a computer-simulated visual prosthesis
that accomplishes global feature correlation by contour tracing
(ii) two similarly constructed recognizing networks, RM (fea-
tures) and RM (relations), onto which the output of the pros-
thesis is mapped; and (iii) an output network RMrep similar in
principle to Brep.. Locally reentrant connections are provided
within each repertoire except R. More globally reentrant con-
nections are provided in both directions between the R-of-R

output output

FIG. 2. Overall system design. Stimulus objects are presented on
an input array. The R repertoire consists of a series of local feature
detectors connected topographically to visual areas in the input array.
R-of-R groups are connected randomly to multiple groups in R and
may also receive input from any or all of the other repertoires. R,,,
groups summarize the activity of collections of neighboring R-of-R
groups. The visual prosthesis traces objects in the input array to obtain
nonlocal characteristics of lines and thejunctions between them. Vir-
tual groups are excited according to these characteristics, which cor-
respond, for example, to the numbers, lengths, curvatures, and ori-
entations of lines and, for junctions, to the number of lines, their
relative lengths, and whether or not they terminate at that junction.
RM (features) [RM (fea.)] and RM (relations) [RM (rel)] groups are
connected to the virtual groups as described in the text. These reper-
toires serve to correlate physically separated object features to give a
global representation that is relatively insensitive to local alterations
in the stimulus patterns. Rm,.p groups summarize the activity of RM
groups. (Connections shown as dashed lines are usually omitted.)

network on the one hand and Rrep, RM (features), RM (rela-
tions), and RMrep on the other (Fig. 2).
The connectivity of a group is determined by a list of the

groups connected to its inputs. Connections are different for
each group but are constructed according to a common rule
within each repertoire. Different repertoires follow different
connection rules, as follows:
R Repertoire. The construction ofthe R repertoire is entirely

systematic. Each R group is designed, by assignment ofappro-
priate connection strengths, to respond to a particular local pat-
tern feature, such as a horizontal line segment. The inputs to
the group (usually 16) are connected to a compact set of grid
points on the input array designated a "visual area. " Each visual
area has one group for each feature-detecting pattern used (up
to 40) and the visual areas are mapped topographically onto the
R sheet.

Prior to presentation with objects and amplification, all rep-
ertoires other than R have random connection strengths drawn
from a normal distribution with specified mean and SD. Both
the numbers of connections and the proportions of excitatory
and inhibitory connections of each type can be set at will.

R-of-R Repertoire. R-of-R groups may receive input con-
nections from groups in any repertoire or set of repertoires, in-
cluding R-of-R itself. The origins of these connections may be
distributed over an entire source repertoire or over some spec-
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ified local subrepertoire. In either case, the exact groups to be
connected to a given R-of-R group are selected at random. The
connections from R constitute the basic patterned input to R-
of-R; the other connections are used to form associations as
described below.
Rrp Repertoire. Each reporter group is connected to groups

within a localized area on the R-of-R sheet. The centers ofthese
areas are selected randomly and uniformly on R-of-R. Individ-
ual connections to the reporter groups are then distributed
around these center points. This allows convergence onto a rel-
atively small number of output groups while maintaining the
distinctness of each R-of-R representation.

Visual Prosthesis andRM Networks. RM groups are connected
to a visual prosthesis that traces over the input array, extracting
certain features (e.g., lines and points) and relationships be-
tween them (e.g., junctions). The trace program uses an ex-
ploratory algorithm to search along contours of a pattern in a
series of trapezoids. Various information about features and re-
lationships (the exact items to be included can be varied) is en-
coded as a list of numbers. This information is used to specify
the states of a set of "virtual groups" that are mapped to a par-
ticular subrepertoire of RM. Virtual groups do not have the or-
dinary input connections or response functions but do have an
output, s, that is computed according to the trace results. The
trace routine is a prosthesis in that its functions could be carried
out by a network ofstandard groups. However, the design com-
plexity of such a network and the irrelevance of the details to
our present aims dictated the prosthetic approach. *

Each RM group is connected to all virtual groups of the ap-
propriate kind: RM (features) groups are connected to virtual
groups encoding feature characteristics and RM (relations)
groups are connected to virtual groups encoding relationship
characteristics. The decay time of the response of an RM group
is long compared with the trace time. Therefore, as the virtual
groups pass through various states in the course of a trace, each
RM group responds essentially to the sum of these states for all
features traced, ensuring independence of the order in which
a trace happens to be made.

RMrep Repertoire. RM reporter groups are arranged in the
same fashion as R-of-R reporter groups, but the RMrep reper-
toire is divided into two subrepertoires-one with input from
RM (features) and one with input from RM (relations). In ad-
dition, RM and RMrep groups may receive reciprocal back con-
nections from R-of-R. The need for reentry has been discussed
elsewhere (1, 2) as a fundamental functional feature of selective
networks; here, the purpose of these connections is to provide
a basis for an associative memory in Darwin based on the in-
teraction between Wallace and Darwint.

Event Cycle. Darwin II operates phasically. In each unit time
interval, new states are calculated for all groups in all repertoires
in turn, and connection strengths are then modified in accord-
ance with the amplification rule. A number of such cycles may
be carried out before a new stimulus is presented. Performance
statistics are gathered during the last cycle for each stimulus and
are reported when all stimuli have been processed. A few tens
of cycles are usually sufficient for the connection strengths to
reach convergence.

RESULTS
The performance of Darwin II is evaluated by a number of sta-
tistical criteria. Typically, network parameters are tuned so that

DARWIN
R R-of-R

WALLACE
Rm (fea.) Rim (rel.)

FIG. 3. Typical response patterns of different repertoires to var-
ious stimuli. For illustration, the groups of each repertoire are placed
on a square lattice and a circle is drawn at the position of each group
responding with 0.5 c s c 1.0. The diameter of the circle is propor-
tional to s. No circles are drawn for groups with 0 -<s < 0.5. Reentrant
connections between Darwin and Wallace are not active. Stimuli pre-
sented were an A (Top), a different, broader, A with a lower crossbar
(Middle), and an X (Bottom).

1-5% of the groups in each repertoire respond above the Op
threshold for a typical stimulus. The progress of amplification
can then be judged by examining such statistics as the number
ofgroups responding above Op ("hits"), the maximum excitation
received by any group in the repertoire, and the sharpness of
the distribution of s. In addition, the statistical routine (but not
the automaton itself) is informed ofthe classes to which stimulus
objects have been assigned by the outside observer. It is then
able to report counts of the numbers of groups that respond to
pairs of stimuli in the same or different classes. These numbers
are compared with those that would be obtained by chance as-
suming a uniform distribution of hits over a whole repertoire.
We present here only a few examples of the broad range of re-
sponses exhibited by the system. They do not test the general
performance of Darwin II nor do they give a secure indication
of the formal limitations of such networks. t

Typical response patterns obtained under conditions in
which the Darwin and Wallace networks were decoupled from
each other are illustrated in Fig. 3. As expected, the R responses
resemble the stimulus patterns because of the topographical
mapping from the input array to R. The R-of-R responses bear
no geometrical relationship to the stimuli and are nearly as dif-
ferent for two different A stimuli as for an A and an X. RM re-
sponses, on the other hand, are very similar for the two A stim-
uli, but different for the X. The mapping ofparticular lines and
junctions to different subrepertoires ofRM can be seen by the
clustering of the response circles. Table 1 contains statistical
data for several such runs. The ratios of the numbers of groups
responding to pairs of stimuli in the same class to the numbers
of groups responding to pairs of stimuli in different classes are
much larger for RM than for R or R-of-R. These ratios reflect

tTo date, we have examined >700 sets of conditions involving 243
different stimuli. Extensive analysis [e.g., by clustering and scaling
methods (3)] will be required to assess the generality of Darwin II's
performance.
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* The detailed design of the prosthesis will be described elsewhere.
t In this paper, we do not discuss the output functions of Rrep and
RMrep-instead we appraise performance by observing patterns of
response in R-of-R and RM directly.
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Table 1. Behavior of Darwin and Wallace networks in parallel but in the absence of reciprocal
reentry

Darwin Wallace
R R-of-R RM (features) RM (relations)

Before amplification
Fraction of groups
above Op threshold 0.02 0.08 0.01 0.02

Disjunction statistic* 0.70 0.71 0.64 0.85
Intraclass cross-
response ratiot 3.68 1.45 43.86 43.14

Interclass cross-
response ratiot 1.88 1.20 0.48 9.04

Intraclass ratio/interclass
ratio 1.96 1.21 90.93 4.77

After amplification§
Fraction of groups
above Op threshold 0.02 0.07 0.01 0.02

Disjunction statistic* 0.71 0.76 0.79 0.96
Intraclass cross-
response ratiot 3.91 1.06 53.09 51.64

Interclass cross-
response ratio* 1.91 0.75 0.22 12.22

Intraclass ratio/interclass
ratio 2.05 1.41 241.3 4.23

Numbers of groups used were R, 3840; other repertoires, 4096 each; total connections, 368,640. Con-
nections in both directions between R-of-R and RM were inactive. Stimuli included four examples of each
of four letters (A, E, Y, E). In eight separate runs, either four letters of the same class (four runs) or four
letters, one from each class (four runs), were presented. Averages over appropriate sets of these runs are
tabulated. Mean responses (M) of groups in different repertoires ranged from 0.05 to 0.10.
* Defined as the mean response (&) of groups for whichs 2. Op minus the mean response of groups for which
s < Op; the statistic increases as the number of groups having responses near s = 0 or s = 1 increases.

t Number of groups responding to both members of a pair of stimuli of the same class, summed over the
six possible pairings of the four stimuli/number of such groups expected if the observed number of hits
were distributed uniformly over the repertoire.

* Same as above except for pairs of stimuli belonging to different classes.
§ Amplification consisted of three series of presentations of the four stimuli in turn, with eight basic cycles
for each stimulus (96 cycles in all). 8 = 0.20, OMi = 0.5, OM,, = 0.5. R groups were not modified.

the limited but definite ability ofRM to make classifications im-
itating those made by the outside observer. [Here RM (rela-
tions) has more groups responding to stimuli in different classes,
and hence a smaller intraclass/interclass ratio, than RM (fea-
tures) because the stimuli presented had some types of junc-
tions in common.] Amplification improves these classification
ratios. It also changes the distribution ofs, yielding more groups
with very high or very low responses, while producing only
small changes in the mean response and numbers of groups
excited above the hit level.

Table 2 outlines one kind ofprotocol under which associative
recall can be demonstrated. Connections in both directions
between RM and R-of-R are initially established with low mean
synaptic strength. During early experience ("training"), those
connections that happen to link groups in the two repertoires
responding to the same stimulus are selectively strengthened
(or "validated") by the standard amplification procedure. After
training, the visual prosthesis is inactivated and the validated
connections from R-of-R to RM are used to activate an image
in RM ofthe trace that was there during training (when the pros-
thesis was on). The reciprocal connections from RM back to R-
of-R then provide a pathway by which these traces in RM can
activate patterns of response in R-of-R corresponding to other
stimuli in the same class, patterns that were active during train-
ing at the same time as the original RM trace. Depending on
the time constants chosen for decay and refractory periods and
on the amount of lateral inhibition used, these associated re-
sponses in R-of-R can occur simultaneously or in sequence.
Association is demonstrated in the example shown by the fact

that, after training, 38 rather than 8 groups responded in test
to both of two stimuli presented successively under conditions
in which R-of-R responses were not dominated by input from
R. The 30 additional groups that responded to both stimuli
when each was presented in successive tests were among the
groups that had responded to only one ofthe two stimuli during
training.

DISCUSSION
The construction of Darwin II was prompted by three related
aims: (i) to test the self-consistency of the notion (1, 2) of group
selection in nonlinear degenerate repertoires made up of neu-
ron-like groups that have preassigned connectivity and con-
nection strengths; (ii) to design networks capable of making
unique representations of individual objects by means of local
feature detection, as well as networks for making relatively in-
variant representations of objects within a class by means of
global feature correlation; and (iii) to arrange reentrant inter-
actions of the two networks carrying out these separate oper-
ations in parallel so that an associative memory linking individ-
ual representations within a class is developed. The preliminary
design and performance described here suggest that, at least
in part, these goals have been achieved.

While there are certain aspects of Darwin II that resemble
perceptrons (4) or self-organizing neural networks (5), our
model differs from them in several respects that enable it to
circumvent certain limitations of such systems (6). Darwin II
is selective rather than instructive and embodies parallel net-
works for local and global feature detection; these produce a
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Table 2. Associative recall reflected in R-of-R repertoire
responses

No. of groups of 256
in repertoire that

responded above Op
To To No. of those that

stimulus stimulus responded above Op to
Condition 1 2 both stimuli

Related stimuli*
Training 32 27 8
Test 38 39 38

Unrelated stimulit
Training 17 34 4
Test 13 31 4

All repertoires had 256 groups except R, which had 3840. Amplifi-
cation parameters were 8 = 0.20, OM, = 0.4, OMj = 0.35. Initially, re-
ciprocal connections between R-of-R and RM were present with a low
mean cij (0.0333) and a high OE (0.6). Training consisted of four alter-
nating presentations (eight cycles per presentation) of each of two
stimuli. Reciprocal R-of-R to Rm connections (see Fig. 2) were allowed
to be amplified after two of these presentations. After training, OE for
these reciprocal connections was decreased to 0.2 and the visual pros-
thesis input to Rm was inactivated. One of the stimuli in each pair was
then presented during test for four cycles to the Darwin network alone.
All input from the input array was then removed and the automaton
was allowed to run for eight more cycles.
*AnXanda +.
tAn A and an X.

patterned correlation of responding groups rather than a single
binary output for each stimulus. It also contains reentrant path-
ways that enable it to deal with a wider range of individual and
class characteristics.

Neither the representative transformations nor the limited
generalizations performed by Darwin II require the direct in-
tervention of a classifying observer, either through instruction
or forced learning. These capabilities arise instead from the se-
lective principle embodied in the network by means of feature
detection, reentry, and differential amplification. Selection
permits the system to make certain discriminations based on
internally generated criteria. If the system is allowed to evolve
according to its experience, these criteria become correlated
with the relevant physical properties of the outside world. The
resulting behavioral primitives provide the necessary substrates
for more sophisticated behavior, including association, learn-
ing, and problem solving. These will require modifications to
the machine not described here.
The first of these, association, has, however, in part been

realized by activating the reentrant "commissural" connections
between Darwin and Wallace. This reciprocal mapping be-
tween the two major subnetworks enables associations to be
made by amplifying connections that link representations ofin-
dividual objects of a class already present in Darwin. The as-
sociation depends on the parallel functioning of the two sub-
networks and on the validation of RM to R-of-R connections
against patterns of activity stimulated by input from R and sus-

tained by reentry within R-of-R. Wallace thus allows associative
connections to be established in Darwin that could not arise
spontaneously. In these associations, representations of indi-
vidual identity and class membership are both largely preserved.

There are some limitations inherent in the design of Darwin
II. Although unstable behavior has been observed in other com-
plex nonlinear systems (7), we have found it possible to adjust
the system parameters to avoid explosive responses and oscil-
latory behavior. Other limitations reflect the deliberate restric-
tion of semantic input, the decision not to include forced learn-
ing, and the omission of defined survival rules based on output
behavior. Until these functions are explicitly introduced, Dar-
win II cannot, for example, develop associations based on con-
vention (such as upper caseA with lower case a) and cannot show
evidence of problem solving. For these reasons, present per-
formance levels only give an indication ofpossible performance
and are not comparable with those of pattern-recognizing ma-
chines based on principles ofartificial intelligence. Our goal was
to achieve a minimal level ofperformance in selective networks;
further experiments and formal analysis will be required to de-
termine maximal performance.

Despite present limitations, it is significant that two parallel
concatenations of selective networks, each carrying out differ-
ent functions on the same input patterns, can generate a new
function not achievable by either alone. Other such dyadic sys-
tems having composite functions can be envisioned, as can
higher order interactions among multiple networks.

It should be emphasized that Darwin II is not an explicit
model of either the whole or part ofany nervous sytem. Never-
theless, it was designed heuristically with nervous systems in
mind and it would not be surprising if it reflected some aspects
of their performance. In any case, it serves to demonstrate the
capabilities ofgroup selection among repertoires ofneuron-like
groups and even its present limited performance establishes the
self-consistency of the ideas of group selection and reentry in
multineuron networks. Demonstration oftheir reality obviously
will depend on direct experimentation in real nervous systems.
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