

Supplemental Figure 1. Immune response marker gene activation with three independent batches of CLV3p preparations.

Immune response marker genes, *FRK1* (A) and *WRKY30* (B), were activated by three different batches of CLV3p. Number 1 is the 12 aa CLV3p (RTVPhSGPhDPLHH; Ph indicates hydroxyproline) ordered from GenScript. Number 2 and 3 peptides containing an additional tyrosine residue at the N-terminus (YRTVPhSGPhDPLHH) were ordered from Phoenix Pharmaceuticals, Inc. Although the length of peptides 2 and 3 is 13 aa, the activity of Tyr-MCLV3p is the same as the 12 aa MCLV3p. Seven-day old seedlings of Col-0 and the *fls2* mutant grown in liquid culture were analyzed by qRT-PCR after treatment with 20 μ M peptides for 1 h. Error bars indicate S.D. (*n* = 3).

Supplemental Figure 2. Flg22 and MCLV3p exhibit distinct pH optima in immune response marker gene activation.

(A) Immune response marker genes, *FAD* (*At1g26380*), *WAK2* (*At1g79680*) and *PEP3*, were activated by 1 nM flg22 in Col-0 and *fls2* seedlings.

(B) Immune response marker genes, FAD, WAK2 and PEP3, were activated by 1 μM MCLV3p in Col-0 and fls2 seedlings.

Seven day-old seedlings grown in liquid culture were treated with 1 nM flg22 (A) or 1 μ M MCLV3p (B) for 1 h in various pH ranges. The expression of each gene was normalized by *ACT2*. Relative activation fold was normalized by the control level without peptide treatment in each pH. Error bars indicate S.D. (*n* = 3).

Supplemental Figure 3. MCLV3p did not block immune response marker gene activation by flg22 at pH 7.0.

Immune response marker genes, *WRKY30* (left) and *FAD* (right), were activated by flg22 in the presence of MCLV3p. Seven day-old seedlings of Col-0 and *fls2* grown in liquid culture were treated with 1 nM flg22, 1 μ M MCLV3p, or both 1 nM flg22 and 1 μ M MCLV3p for 1 h at pH 7.0. The expression of each gene was normalized by *ATC2*. Error bars indicate S.D. (*n* = 3).

Supplemental Figure 4. *Pst* DC3000-GFP invades inside the SAM of *clv3* and *fls2* seedlings.

Bacterial infection analyses in the SAM of Ler (A, E), clv3-2 (B), fls2-24 (F), clv1-1 (G) and clv2-1 (H). *P. syringae* pv. *tomato* DC3000-GFP was co-cultivated grown in liquid medium with seedlings for 4 days. *Pst* DC3000-GFP (green) and the cell membrane (red; stained by FM4-64 dye) were visualized using a confocal laser-scanning microscope. (C) and (D) are the bright field pictures of Ler (A) and clv3 (B). Scale bars in (A) to (H) = 10 µm.

Supplemental Figure 5. Analysis of *Pst* DC3000 infection in the SAM regions of seedlings grown in liquid culture by SEM.

(A) and (B) are non-cropped pictures of Figures 7A and 7B. Non-cropped pictures of (A) and (B) show the SAM and flanking leaf primordia (P) and young leaves (L). Scale bars of (A) and (B) = $10 \mu m$.

(C) Bacterial colonization in plant cells by SEM analysis. Scale bar = $10 \mu m$.

(D) A magnified image of selected region (white dot box) in (C) showing bacterial colonization. Scale bar = 1 μ m.

Supplemental Figure 6. Visible SAM in Arabidopsis seedlings.

The SAM of L*er* (**A**) and *clv3-2* (**B**) seedlings grown in liquid culture are shown. Most tissues from cotyledons and early true leaves were removed. The SAM (white dot line) of L*er* and *clv3-2* is surrounded by the remaining tissues from cotyledons (C) and young leaves (L). Red asterisks indicate the SAM region. Scale bars in (**A**) and (**B**) = 50 μ m.

Supplemental Table 1. Primers used for qRT-PCR

Name	Forward primer	Reverse primer
FRK1 (At2g19190)	ATCTTCGCTTGGAGCTTCTC	TGCAGCGCAAGGACTAGAG
WRKY30 (At5g24110)	GCAGCTTGAGAGCAAGAATG	AGCCAAATTTCCAAGAGGAT
PEP3 (At5g64905)	TCCGGTCTCGAAAGTTCATC	CTCATCTTCCTCGCTGTGTG
ACT2 (At3g18780)	TCCCTCAGCACATTCCAGCAGAT	AACGATTCCTGGACCTGCCTCATC
DcGFP	TGGAAGCGTTCAACTAGCAG	AAAGGGCAGATTGTGTGGAC
FAD (At1g26380)	ATCAAGGGTGAGGAGAGACG	GAGCATACAATCCAATATTTCAACC
WAK2 (At1g79680)	AGGGAAGGAAACGACCAAGT	GCGACGAAGATGTTGTAGCA