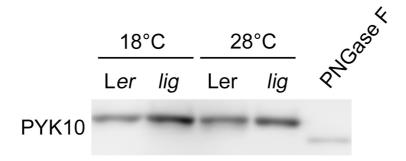



**Supplemental Figure 1.** Anion Exchange HPLC Elution Profiles for UDP-GlcNAc and UDP-GalNAc Analyses in the *lig* Mutant and Wild-type Seedlings.


Nucleotide sugars were extracted from the roots of seedlings of the wild type (Ler) and *lig* mutant grown for 5 d at 18°C and then for 3 d at 18°C or 28°C. The eluate was monitored at 254 nm. Arrows indicate cytidine-5'-monophospho-*N*-acetyl-D-neuraminic acid as an internal standard (IS), UDP-GlcNAc, and UDP-GalNAc.



**Supplemental Figure 2.** Effects of Treatment with Nonacetylated Glucosamine or Glucosamine-6-Phosphate on Root Growth and Ectopic Lignin Deposition in the *lig* Mutant.

Seedlings were cultured on GMA containing various concentrations of glucosamine-6-phosphate (GlcN-6-P) or glucosamine (GlcN) for 3 d at 28°C after 5 d of culture at 18°C.

- (A) (B) Growth of primary roots during 3 d of culture at 28°C was measured. Vertical bars represent SE values for seven to 16 seedlings.
- (C) Primary root tips of the wild-type (Ler) and lig seedlings stained with phloroglucinol-HCl for detection of lignin. Scale bar represents 100  $\mu$ m.



**Supplemental Figure 3.** Immunoblot Analysis with the Anti-PYK10 Antibody.

Proteins were extracted from the roots of seedlings of the wild type (Ler) and lig mutant grown for 6 d at 18°C and then for 3 d at 18°C or 28°C. A portion of the protein sample prepared from the wild type (Ler, 28°C) was incubated in the presence of PNGase F for digestion of N-glycans before SDS-PAGE. Each lane contains proteins equivalent to the extract from 2 mg (fresh weight) of root tissues.

**Supplemental Table 1.** Segregation of the Adventitious Root Phenotype in the Progeny of the Mutant Line Backcrossed with the Wild-Type Ler.

| Plant line                       | Number of explants that formed adventitious roots normally at 28°C / Total |
|----------------------------------|----------------------------------------------------------------------------|
|                                  | number of explants examined                                                |
| Ler                              | 16 / 16                                                                    |
| b2337 <sup>a</sup>               | 0 / 12                                                                     |
| $BC_2-1^b$                       | 22 / 32°                                                                   |
| $BC_2-2^b$                       | 23 / 32 <sup>c</sup>                                                       |
| $BC_2-3^b$                       | 32 / 32                                                                    |
| $BC_2-4^b$                       | 25 / 27                                                                    |
| $BC_2-4^b$ $BC_2-5^b$ $BC_2-6^b$ | 28 / 28                                                                    |
| $BC_2-6^b$                       | 26 / 32°                                                                   |

Hypocotyl explants were cultured on RIM at 28°C to examine the temperature sensitivity of adventitious root formation.

<sup>&</sup>lt;sup>a</sup> The original line of *lig*.

<sup>&</sup>lt;sup>b</sup> The b2337 (original *lig*) line was backcrossed two times with the wild-type Ler and the resultant BC<sub>2</sub> plants were allowed to self-pollinate. Seeds were collected separately from each individual BC<sub>2</sub> plant and subjected to examination of the adventitious rooting phenotype.

<sup>&</sup>lt;sup>c</sup> Not significantly different from the ratio of three normal to one temperature-sensitive (P > 0.1, by  $X^2$  test). In these cases, the parental BC<sub>2</sub> plants were assumed to be heterozygous for a single, recessive mutation responsible for the temperature sensitivity of adventitious root formation.

| Supplemental Table 2. Primers Used in RT-PCR Analysis. |                              |        |  |
|--------------------------------------------------------|------------------------------|--------|--|
| Primer Name                                            | Sequence                     | Cycles |  |
| PAL1-F                                                 | 5'-CACGAGATTGGCGATAGCAG      | 26     |  |
| PAL1-R                                                 | 5'-TCCGTTATCGTAGGCTGCTC      |        |  |
| CCR1-F                                                 | 5'-TTGTTGAGATTCTGGCTAAGCTA   | 26     |  |
| CCR1-R                                                 | 5'-TGAAGACTTGACTACAAAATCCATC |        |  |
| CCR2-F                                                 | 5'-TGTTGAGATTCTGGCCAAATTC    | 28     |  |
| CCR2-R                                                 | 5'-ATAAAACCATTGCTTCCATTATCG  |        |  |
| CAD-C-F                                                | 5'-GCACAGGAGCAGATGATG        | 26     |  |
| CAD-C-R                                                | 5'-CGCCATTAGACCGAAGTG        |        |  |
| CAD-D-F                                                | 5'-GGGGACATAGTTGGAGTTGGT     | 26     |  |
| CAD-D-R                                                | 5'-GCTCCCCGTTATCACTTTCCT     |        |  |
| UBQ-F                                                  | 5'-TAAAAACTTTCTCTCAATTCTCTCT | 24     |  |
| UBQ-R                                                  | 5'-CAAGAGTTCTGCCATCCTC       |        |  |
| BIP3-F                                                 | 5'-AAGGCGAAGAGCAGAAACTG      | 28     |  |
| BIP3-R                                                 | 5'-CCCGTTGGCTCATTGATT        |        |  |
| ACT2-F                                                 | 5'-TTAACTCCCGCTATGTATGTC     | 24     |  |
| ACT2-R                                                 | 5'-TTCCATTCCCACAAACGAG       |        |  |