

Supplemental Figure 1. Accumulation of the BSD2 transcript in raf1.

RT- PCR was performed using primers ZmBSD2-SQF and ZmBSD2-SQR (Supplemental Table 3). Actin was used as the control gene amplified using primers ZmActin1-SQF and ZmActin1-SQR . Samples with genotype +/+ are siblings of the parents of *raf1-1* homozygous (-/-) mutants. *bsd2* mutant was used as a negative control.

Supplemental Figure 2. Validation of *RAF1* gene identification.

(A) Gene-specific PCR validating RAF1 identification. The higher and lower molecular weight products appear to result from mis-priming by the ZMRAF1-FOR1 primer.

(B) Accumulation of *RAF1* transcripts in *raf1-1*. RT-PCR was performed using ZmRAF1-FOR1 and ZmRAF1-REV1 primers. Actin was used as the control gene.

Supplemental Figure 3. Gene-specific PCR validating the locations of the three *RAF1* insertions.

The primers *Mu* and ZmRAF1-REV2 amplified the region between each insertion and 23 bp upstream of the stop codon.

Α

<u>- ' -</u>					_
Ear	female parent(+)	male parent(+)	segregating	segregating	P
-		(/	green F1	pale green F_1	value
1	raf1-1-1	raf1-2-1	34	13	0.67
2	raf1-1-2	raf1-2-1	38	10	0.5
3	raf1-1-2	raf1-2-3	33	10	0.79
4	raf1-1-3	raf1-3-6	32	14	0.39
5	raf1-2-1	raf1-1-1	22	5	0.44
6	raf1-2-2	raf1-1-3	32	12	0.73
7	raf1-2-4	raf1-1-3	22	2	0.06
8	raf1-2-5	raf1-1-1	30	9	0.78
9	raf1-2-6	raf1-1-2	32	11	0.93
10	raf1-3-1	raf1-1-2	26	2	0.03
11	raf1-3-2	raf1-1-1	33	10	0.79
12	raf1-3-3	raf1-1-3	36	7	0.19
13	raf1-3-5	raf1-1-1	19	8	0.58
14	raf1-3-2	raf1-2-4	10	2	0.5

Supplemental Figure 4. Complementation crosses confirm that *raf1* encodes the regulator of Rubisco accumulation.

(A) Genetic analysis of crosses between heterozygotes carrying the indicated alleles. The *P*-value was derived from a Chi-squared test, based on the phenotypic segregation patterns of F_1 progeny. (B) Crosses used for the immunoblot analysis in panel (C).

(C) Immunoblot analysis of representative complementation cross progeny as given in panel (B).

Α

Supplemental Figure 5. Alignment of RAF1 homologues.

Page 1 of 2; see legend on page 2.

Supplemental Figure 5. Alignment of RAF1 homologues.

Alignments were performed using the ClustalW option of the MEGA4 program, after deletion of the predicted chloroplast transit peptide from the plant proteins. Amino acids are color coded as hydrophobic, yellow; polar, green; acidic, red; basic, blue; tyrosine, light green; glycine, pink; proline, blue; cysteine, brown; and histidine, light blue. The first 35 amino acids of a 60 amino acid domain identified by MGD as having homology to Docking domain A of the erythromycin polyketide synthase are highlighted with a black bar, whereas the last 21 amino acids, highlighted is gray, are conserved only in monocots and are absent from cyanobacterial proteins.

Supplemental Figure 6. Analysis of LS from total soluble protein.

- (A) Native gel analysis. Total soluble leaf proteins of 10-day-old WT and *raf1-1* seedlings were extracted from equal surface areas and separated in a 3-12% native gel, which was analyzed by immunoblotting for LS. LS_C marks the migration of the putative LS-chaperone complex, and Rb the position of Rubisco holoenzyme.
- (B) Denaturing gel analysis of the same protein samples.

Deconvoluted data to find monomer mass

Supplemental Figure 7. Analysis of recombinant RAF1.

(A) Purified γ -globulin, ovalbumin and RAF1 were separated in parallel by size exclusion chromatography. The smaller peaks observed for ovalbumin and γ -globulin are dimers. X-axis, time in min. QTof-MS was used to assess the purity of the three RAF1 peaks. Both the trimeric and monomeric peaks yielded a monomermic mass as 47,601.1 Da, corresponding to rRAF1. The peak migrating near 75 min, however, contained a mixture of proteins and thus cannot be confirmed as a RAF1 complex.

(B) QTOF mass spectrometry of the ~150 kDa peak of rRaf to determine the components of the higher molecular complex.

Supplemental Figure 8. Co-expression of LS and Rubisco biogenesis factors in *E. coli*. The RAF1 requirement for the solubility of maize LS was assessed in *E. coli* cells with co-expression of RAF1 and other Rubisco biogenesis factors, including BSD2 (GRMZM2G062788), Cpn60 α 1, Cpn60 β 1, Cpn20-2 (GRMZM2G127609), Cpn20-3 (GRMZM2G399284), RBCX (GRMZM2G115476) and SS (GRMZM2G098520). Extracted lysate from untransformed *E. coli* Bl21DE3 was used as negative control (lane 1).

<u>Methods</u>: Expression from Duet vectors (Novagen) was induced by 1 mM IPTG in Bl21(DE3) cells grown to OD of 0.5, for two hr at 28°C. Equivalent amounts of cells were lysed by sonication and fractioned into soluble and insoluble fractions by centrifugation (15,000xg, 30 min at 4°C). Fractions were analyzed by 13% SDS-PAGE, followed by immunoblotting with LS (Agrisera), RAF1, S-tag (GenScript) and His-tag (Sigma) antibodies.

J	н.	
-		

	Species	Locus
1	Zea mays	GRMZM2G457621
2	Oryza sativa	NM_001071247
3	Sorghum bicolor	XM_002448739
4	Triticum aestivum	AK334642
5	Glycine max	AK285150
6	Arabidopsis thaliana-1	AT5G28500
7	Arabidopsis thaliana-2	AT3G04550
8	Brassica rapa	AC189468
9	Vitis vinifera	XM_002268512
10	Ricinus communis	XM_002521916
11	Populus trichocarpa	XM_002319615
12	Coffea canephora	ABZ89185
13	Medicago truncatula	AC146861
14	Selaginella moellendorffii	XM_002964409
15	Physcomitrella patens	XM_001755326
16	Picea glauca	BT117013.1
17	Ostreococcus tauri	XM_003084347
18	Micromonas sp.	XM_002508645
19	Nostoc azollae	CP002059.1
20	Anabaena variabilis	CP000117.1
21	Acaryochloris marina	CP000828.1
22	Synechococcus sp.	CP000951.1
23	Cyanothece sp.	CP001287.1
24	Gloeobacter violaceus	BA000045.2
25	Trichodesmium erythraeum	CP000393.1
26	Microcystis aeruginosa	AM778923.1

Supplemental Table 1. Accession numbers of *RAF1* sequences from green species. The maize accession number was obtained from <u>http://www.maizeqdb.org/</u>. The *raf1* loci from other species were obtained from Genbank, except the *Setaria viridis* sequence, which was kindly provided by Dr. Katrien Devos, Univ. Georgia. The protein sequence for *Selaginella moellendorffii* present in the database is incorrect.

21	Data from WT samn	Data from WT sample		
Accession number	Annotation	Curated Loc.	Score	Match
GRMZM2G385622 P01	(GRMZM2G062854 P01) CF1 beta subunit (atpB)	thylakoid-peripheral-stromal-side	864	65
GRMZM2G360821 P01	Ribulose bisphosphate carboxylase large subunit	plastid stroma	720	54
NP 043022	CF1α alpha subunit (atpA)	thylakoid-peripheral-stromal-side	700	46
GRMZM2G083841_P01	Phosphoenolpyruvate carboxylase 1 (PEPCase 1)	cytosol	644	75
GRMZM2G113033_P01	Rubisco small subunit-4 (RBCS-4) -1	plastid stroma	443	22
GRMZM2G085019_P01	NADP-malic enzyme 4-1&2 (NADP-ME4)	plastid stroma	414	21
GRMZM2G098520_P01	Rubisco small subunit-4 (RBCS-4) -2	plastid stroma	400	26
<u>GRMZM2G011507</u> P01	pyruvate phosphate dikinase-1 (PPDK-1) M (C4)	plastid stroma	291	27
GRMZM2G337113_P02	glyceraldehyde-3-phosphate dehydrogenase A-2 (GAPA-2)	plastid stroma	183	15
GRMZM2G048907_P01	CF1 γ subunit (atpC)	thylakoid-peripheral-stromal-side	170	17
GRMZM2G083716_P01	Cpn60-beta-1	plastid stroma	153	17
AC215201.3 FGP005	Cpn60-alpha-1	plastid stroma	146	21
<u>GRMZM2G064096</u> P01	germin-like protein (GER3)		111	10
<u>GRMZM2G046284</u> P01	fructose-bisphosphate aldolase-2 (SFBA-2)	plastid stroma	102	7
<u>GRMZM2G007263</u> P01	glyceraldehyde-3-phosphate dehydrogenase B (M-enriched)	plastid stroma	80	8
<u>GRMZM2G106061</u> P01	elongation factor Tu (EF-Tu-1), plastid	plastid stroma	60	8
<u>GRMZM2G001696</u> P01	phosphoenolpyruvate carboxykinase	mitochondria	52	2
<u>GRMZM2G041275</u> P01	ATP synthase beta subunit	mitochondria	48	4
<u>GRMZM2G080136</u> P01	phosphoglycerate kinase 2 (PGK-2) BS-enriched	plastid stroma	43	0
GRMZM2G018197 P01	Pilospinogiycerate kinase 1 (FGK-1) M-enficited	plastic strona	43	6
GRMZM2G098290 P01	dutamate ammonia ligase (CS2), chloroplast	plastid stroma	42	5
GRMZM2G079668_P01	cnHSP70-1 (DnaK homologue)	plastid stroma	41	3
NP 043046	ribosomal protein S18	chloroplast	38	2
GRMZM2G084465 P01	40S ribosomal protein S23	onoropiaot	36	3
GRMZM2G007695 P01	Ribosomal protein L4/L1 family	chloroplast/cvtosol	35	4
GRMZM2G015419 P02	lipoxygenase 2.3	chloroplast	35	5
GRMZM2G101689 P01	U4/U6 small nuclear ribonucleoprotein PRP4-like protein-like		35	4
GRMZM2G353103 P01	40S ribosomal protein S16		33	1
GRMZM2G016232_P01	Histone H4	nucleus	33	2
<u>GRMZM2G360021_</u> P01	50S ribosomal protein L12-C	plastid ribosome	32	6
	Data from <i>raf1</i> samp	ble		
GRMZM2G083841_P01	Phosphoenolpyruvate carboxylase 1 (PEPCase 1)	cytosol	1409	123
<u>GRMZM2G011507</u> P01	pyruvate phosphate dikinase-1 (PPDK-1) M (C4)	plastid stroma	565	46
<u>GRMZM2G085019</u> P01	NADP-malic enzyme 4-1&2 (NADP-ME4)	plastid stroma	462	17
<u>GRMZM2G385622</u> P01	(GRMZM2G062854_P01) CF1 beta subunit (atpB)	thylakoid-peripheral-stromal-side	449	54
<u>NP_0430</u> 22	CF1a alpha subunit (atpA)	thylakoid-peripheral-stromal-side	248	28
<u>GRMZM2G064096</u> P01	germin-like protein (GER3)		245	13
<u>GRMZM2G097457</u> P01	C3-type pyruvate phosphate dikinase-2	plastid stroma	192	12
<u>GRMZM2G106061</u> P01	elongation factor Tu (EF-Tu-1), plastid	plastid stroma	158	7
<u>GRMZM2G158394</u> P01	extracellular ribonuclease LE precursor		145	12
GRMZM2G007263_P01	glyceraldehyde-3-phosphate dehydrogenase B (M-enriched)	plastid stroma	138	14
<u>GRMZM2G121878</u> P01	carbonic anhydrase chloroplastic-like	chloroplast	131	23
<u>GRMZM2G337113</u> P02	glyceraldehyde-3-phosphate dehydrogenase A-2 (GAPA-2)	plastid stroma	124	10
<u>GRMZM2G046284</u> P01	fructose-bisphosphate aldolase-2 (SFBA-2)	plastid stroma	119	8
GRMZM2G083716 P01	Configurerate kinase	plactid stroma	107	20
<u>GRMZM2G079668</u> P01	opHSP70.1 (DpcK homologue)	plastid stroma	66	2
GRMZM2G047028 P01	nhosphoglycerate kinase	plastic stronia	56	3
GRMZM2G154218 P01	elongation factor 1 alpha		53	
GRMZM2G048907 P01	CE1 gamma subunit (atpC)	thylakoid-peripheral-stromal-side	49	2
GRMZM2G134797 P02	nucleoside diphosphate kinase		48	8
NP 043046	ribosomal protein S18	chloroplast	45	4
GRMZM2G057535_P01	elongation factor 1-alpha		45	3
GRMZM2G172369 P03	lysosomal alpha-mannosidase-like		43	1
GRMZM2G008247_P01	beta-D-glucosidase precursor		40	8
AC215201.3 FGP005	Cpn60-alpha-1	plastid stroma	40	7
<u>GRMZM2G119169</u> P01	60S ribosomal protein L17		40	3
GRMZM2G129246_P01	peroxisomal (S)-2-hydroxy-acid oxidase GLO1-like		39	2
<u>GRMZM2G134264</u> P01	hypothetical protein		39	4
<u>GRMZM2G024354</u> P01	60S ribosomal protein L15		32	1
<u>GRMZM2G013478</u> P01	nucleoside diphosphate kinase 2		31	6
CDM7M2C427069 D04		plastid ribosome	30	2
GRM7M2G084465 P01	serineyiyoxyiate aminotransierase		29	2
GIAMEM20004400 1-01			29	2

Supplemental Table 2. Protein data obtained from gel slices corresponding to the position of LS_c . Accession numbers are from Gramene. "Curated Loc." indicates the annotated subcellular location. "Score," the sum of the highest ion score for each protein; Match, the number of MS/MS spectra that were matched to each protein. The cells highlighted in yellow indicate proteins identifed in both genotypes; cells highlighted in green indicate the chaperonins discussed in the main text.

 $\exists 1$

	Primer name	Sequence
1	ZmBSD2-SQF	CGTCTCCCGCCACTGCAAGA
2	ZmBSD2-SQR	TTCATCGAAAGTGCTAAACCGATGAC
3	ZmActin1-SQF	TACGAGCGCTGAGCGGGAGA
4	ZmActin1-SQR	GCTGCTAGGAGCCAGGGACG
5	ZmrbcL-Cod1	TTGCCGCGACAACGGCCTAC
6	ZmrbcL-Rev1	TCGCGCCCTTCGTTACGAGC
7	ZmRBCS2-Cod1	GGCCTACGGCAACAAGAAGTT
8	ZmRBCS2-Rev1	CAAGAATCGACAGTCGTTGC
9	ZmPsbA-5'	CTTCTTCTTGCCCGAATCTG
10	ZmPsbA-3'	TATCGCATTCATTGCTGCTC
11	EoMu1	GCCTCCATTTCGTCGAAT CCC
12	EoMu2	GCCTCTATTTCGTCGAATCCG
13	ZmRAF1-FOR1	AGCTCTACC AGCCGTTCCAC
14	ZmRAF1-REV1	CTCGAGCCTGTAGCCGATG
	ZmRAF1-FOR2	GGTCCTGTACGAGCTCCGCT
15	ZmRAF1-REV2	CATGTCGTCCTCGTCCTTGG
16	Zmqactin-1F	GTG ACA ATGGCACTGGAATG
17	Zmqactin-1R	CCA TGCTCAATCGGGTACTT
18	ZmqLS-1F	AAGGGGAACGCGAAATAACT
19	ZmqLS-123R	AGGCTTCTAAAGCCACACGA
20	ZmqSS-9F	GTTCGTGTACCGCGAGAACT
21	ZmqSS-9R	GTCGATCTAGCCACGGTCTC
22	ZmqME-1F	TGGCAGAGCAGACGTATTTG
23	ZmqME-1R	TGAAGGGAGCCTTTACGAGA
24	ZmqMDH-1F	TCACCTGCTGTTCAA ACTCG
25	ZmqMDH-1R	GGATACAGCGAGTCCTCCAG

Supplemental Table 3. Primers used in this work.