
Tutorial for BaSAR - a tool in R for
frequency detection

Installing BaSAR

The package and a manual are available at http://cran.r-project.org/web/packages/BaSAR/.
To install from the R command line, type the following:

install.packages("BaSAR")

library(BaSAR)

The package should now be installed and ready to use. An additional library is useful for
plotting. To load this type:

library(fields)

Basic functions

The data sets that we will use have been loaded along with the package, and the first is
called tutorial. The first column in this data set is the time vector, and the rest are
simulated time series. The time points are evenly sampled, but this is not a requirement
of the package.

BaSAR.post

The basic function in BaSAR is BaSAR.post, which is used to compute the posterior
distribution over the frequency. It is used in this manner:

BaSAR.post(data, start, stop, nsamples, nbackg, tpoints).

The function expects four parameters that define the interval in seconds over which the
posterior probability for the period is computed (start, stop), the number of samples
to use in the interval (nsamples), the number of background functions (nbackg) as well
the data points (data) and of time points for the data (tpoints).

The first dataset consists of the sine wave of angular frequency 0.5 rad/s with added
random noise. The plot of the time series is shown in Figure 1, left panel. To plot this
data, type:
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plot(tutorial[,2], type="l", col="blue", xlab="t", ylab="d(t)")

We need to specify the period range we wish to explore. In this example, we have
chosen the generous range of 6s to 600s. The number of samples was set to 100. A higher
number increases the computational time, and a lower number decreases the accuracy
of the frequency estimate. From the plot of the time series no background trend is
detectable, so there is no need to add background model functions. This parameter is
therefore set to zero.

Run BaSAR.post with these settings. It will return the normalized posterior distri-
bution of angular frequency over the chosen interval.

r <- BaSAR.post(tutorial[,2], 6, 600, 100, 0, tutorial[,1])

Plot the resulting posterior density function, and this should look like the right panel
of Figure 1.

plot(r$omega, r$normp, xlim=c(0:1), type="h", col="red", ylab="PDF",

xlab=expression(omega))

The high peak is at the correct angular frequency of ω = 0.5.
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Figure 1: BaSAR.post

BaSAR.fine

The function BaSAR.fine is useful when a higher resolution of the frequency is desired.
It identifies the highest probability peak, and then samples again in a narrower interval
around this peak. It is used as BaSAR.post:

BaSAR.fine(data, start, stop, nsamples, nbackg, tpoints)

The second time series that we will analyze is is also a sine wave with an angular
frequency of 0.5, but with a much higher noise level. To go through the example, type
the following on the R command line:
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plot(tutorial[,3], type="l", col="blue", xlab="t", ylab="d(t)")

r <- BaSAR.fine(tutorial[,3], 6, 600, 100, 0, tutorial[,1])

plot(r$omega, r$normp, xlim=c(0:1), type="h", col="red", ylab="PDF",

xlab=expression(omega))

The result can be seen in Figure 2. Despite the higher noise level, BaSAR identifies
the correct angular frequency.
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Figure 2: BaSAR.fine

BaSAR.auto

Many types of data, especially in biology, contain background trends or fluctuations that
are irrelevant to the signal of interest. In BaSAR, it is possible to account for such
background trends by adding background model functions to the model. In this way, we
avoid involving detrending techniques in our analysis. The function BaSAR.auto is an
automated way of choosing how may background functions are optimal for the time series
at hand, by using Bayesian model ratios. The user only needs to specify an upper limit,
nbackg. In all else, the function is very similar to the basic BaSAR.post:

BaSAR.auto(data, start, stop, nsamples, nbackg, tpoints)

Plot the time series, the fourth column of tutorial. This is again a sine wave with
angular frequency of 0.5 and a small amount of random noise, but there is also a back-
ground trend added.

plot(tutorial[,4], type="l", col="blue", xlab="t", ylab="d(t)")

The plot is shown in the left panel of Figure 3. It is a strong background trend, but
not very complicated, so a few background functions should suffice. We choose four as
the upper limit, and for the other parameters we keep the same settings that we have
used before.

r = BaSAR.auto(tutorial[,4], 6, 600, 100, 4, tutorial[,1])

plot(r$omega, r$normp, xlim=c(0:1), type="h", col="red", ylab="PDF",
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xlab=expression(omega))

The result shows that BaSAR has managed to find the correct angular frequency,
despite the strong background present. If you type r$model you will see how many
background model functions were chosen by the software in this instance (two). Here you
will also be warned if your upper limit was reached, and in that case you should increase
it.

Model functions can also be added manually and their impact evaluated using the
BaSAR.modelratio function. For more information on this function, see the package
manual on the CRAN website.
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Figure 3: BaSAR.auto

BaSAR.local

Some frequencies change over time. In this case, there is a windowed version of BaSAR.post
called BaSAR.local that is convenient.” to ”To handle frequencies that vary over time,
BaSAR.local is provided which uses as windowed version of BaSAR.post. Here an addi-
tional parameter needs to be specified, namely the size of the window. This may require
some trial and error from the user since the optimal window size will vary with the data.
The function is used in this manner:

BaSAR.local(data, start, stop, nsamples, tpoints, nbackg, window)

As before, start by visually inspecting the time series, then choose the settings and
run BaSAR.local. The time series is now the fifth column of tutorial, and is a sine
wave that starts with an angular frequency of 0.5 but this increases with every time point.

plot(tutorial[,5], type="l", col="blue", xlab="t", ylab="d(t)")

r <- BaSAR.local(tutorial[,5], 2, 30, 100, tutorial[,1], 0, 10)

image.plot(tutorial[,1],r$omega,r$p,ylab=expression(omega),xlab="t",

col=rev(heat.colors(100)))

The result here is a two-dimensional posterior distribution over the angular frequency
and time, and is shown in the right panel of Figure 4.
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Figure 4: BaSAR.local

An example with real data

The last example is a time series showing oscillations in calcium concentrations, and
there are two points that need attention. The data contain a background trend, which
is separate from the oscillations that we are interested in. Also, the frequency seems to
slow down over time. Therefore, we will use BaSAR.local, and add background model
functions to account for the background trend.

Start by plotting the time series, as shown in Figure 5. The first and second columns
in the second data set tutorial.2 represent the time and data vectors respectively:

plot(tutorial.2[,1],tutorial.2[,2],type="l",col="blue",xlab="t",ylab="d(t)")

One background function will be sufficient, since the trend is not very strong. For
the other parameters, a period between 40 and 120 seconds looks likely from a visual
inspection, and we choose a window size of 50 data points. Now we will run BaSAR.local
and plot the result.

r <- BaSAR.local(tutorial.2[,2], 40, 120, 100, tutorial.2[,1], 1, 50)

image.plot(tutorial.2[,1],r$omega,r$p,ylab=expression(omega),xlab="t",

col=rev(heat.colors(100)))

The result in the right panel of Figure 5 shows the decreasing period and also demon-
strates the higher uncertainty that comes with real biological data, compared to the
simulated case.
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Figure 5: BaSAR.local on calcium oscillation data
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