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Figure 1: A diagram of meta-analysis pipeline using MetaQC, MetaDE and MetaPath.
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1 INTRODUCTION

With the rapid advances and prevalence of high-throughput genomic technologies, integrating information

of multiple relevant genomic studies has brought new challenges. Microarray meta-analysis has become a

frequently used tool in biomedical research. Little effort, however, has been made to develop a systematic

pipeline and user-friendly software. To fill this gap, we present MetaOmics, a suite of three R packages

MetaQC, MetaDE and MetaPath, for quality control, differentially expressed gene identification and

enriched pathway detection for microarray meta-analysis. MetaQC provides a quantitative and objective

tool to assist study inclusion/exclusion criteria for meta-analysis. MetaDE and MetaPath are developed

for candidate marker and pathway detection, that provide choices of marker detection, meta-analysis

and pathway analysis methods. Figure 1 shows a generic diagram of meta-analysis pipeline using the

three packages. After microarray studies are identified, extracted and annotated, MetaQC is applied to

determine inclusion/exclusion criteria of the studies. MetaDE and MetaPath can then be used separately

to detect candidate markers or pathways associated with disease outcome.

The MetaQC provides a main function,"MetaQC",for calculating six quantitative quality control mea-

sures for quality control[4]: (1) internal homogeneity of co-expression structure among studies (inter-

nal quality control; IQC); (2) external consistency of co-expression structure correlating with pathway

database (external quality control; EQC); (3) accuracy of differentially expressed gene detection (accu-

racy quality control; AQCg) or pathway identification (AQCp); (4) consistency of differential expression
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ranking in genes (consistency quality control; CQCg) or pathways (CQCp). The package also provides a

plot function to draw the PCA biplot for assisting visualization and decision. Results generate systematic

suggestions to exclude problematic studies in microarray meta-analysis and potentially can be extended

to GWAS or other types of genomic meta-analysis. The identified problematic studies can be scrutinized

to identify technical and biological causes (e.g. sample size, platform, tissue collection, preprocessing

etc) of their bad quality or irreproducibility for final inclusion/exclusion decision.

MetaDE package provides functions for conducting 12 major meta-analysis methods for differential

expression analysis (see Table 1): Fisher [21, 10], Stouffer [24], adaptively weighted Fisher (AW)[16],

minimum p-value (minP), maximum p-value (maxP)[30], rth ordered p-value (rOP) (Song and Tseng,

2012), fixed effects model (FEM), random effects model (REM)[3], rank product (rankProd)[14], naive

sum of ranks and naive product of ranks [6]. Detailed algorithms, pros and cons of different methods

have been discussed in a recent review paper [26]. In addition to selecting a meta-analysis method, two

additional considerations are involved in the implementation: (1) Choice of test statistics: Different test

statistics are available in the package for each type of outcome variable (e.g. t-statistic or moderated

t-statistic for binary outcome, F-statistic for multi-class outcome, regression or correlation coefficient for

continuous outcome and log-rank statistic for survival outcome). Additionally, a minimum multi-class

correlation (min-MCC) has been included for multi-class outcome to only capture concordant expression

patterns that F-statistic often fails (Lu, et al., 2010); (2) One-sided test correction: When combining

two-sided p-values for binary outcomes, DE genes with discordant DE direction may be identified and the

results are difficult to interpret (e.g. up-regulation in one study but down-regulation in another study).

One-sided test correction is helpful to guarantee identification of DE genes with concordant DE direction.

For ex-ample, Pearson’s correction has been proposed for Fisher’s method (Owen, 2009). In addition

to the choices above, MetaDE also provides options for gene matching across studies and gene filtering

before meta-analysis. Outputs of the meta-analysis results include DE gene lists with corresponding raw

p-value, q-values and various visualization tools. Heatmaps can be plotted across studies.

The MetaPath package provides a main function,"MAPE",for implementing three meta-analysis frame-

work for pathway enrichment analysis: MAPE G, MAPE P and MAPE I [17]. In the original paper,

meta-analyses for pathway enrichment integrated at the gene level (MAPE G) and integrated at the

pathway level (MAPE P) were investigated. For MAPE G, information across studies was combined

at the gene level and then pathway enrichment analysis was applied. Conversely, for MAPE P, path-

way analysis was first performed in each study independently. The information across studies was then

combined at the pathway level. In the simulation analyses and applications, MAPE G and MAPE P

had complementary advantages and disadvantages under different scenarios and data structure. A hybrid

framework, namely MAPE I, was proposed to integrate advantages of both MAPE G and MAPE P. Sim-

ilar to MetaDE, MetaPath also provides multiple options of gene matching, gene filtering, meta-analysis

methods and test statistics to associate with different outcomes. The MetaPath package also provides

functions to draw the heatmap of q-values of pathways and a Venn diagram to show the overlapped

pathways identified by three MAPE methods.

The purpose of the present document is to provide a general overview of these three packages and

their current capabilities. Not all of the possibilities and options are described, as this would require

a much longer treatment. The primary package documentation in the form of standard help files can

be viewed in R. The article is therefore a starting point for those interested in exploring the possibility

of conducting meta-analyses in R with these three packages. All three packages have been uploaded to

CRAN repository with standard documents and help files. They constantly maintained and updated to

3



Table 1: the list of test statistics in individual analysis and methods of meta-analysis can be implemented in

MetaDE package

Outcome Variable binary multi-class continuous suvival

Test statistics

paired t-statistics F-statistics Pearson correlation log-rank statistics

unpaired t-statistics Spearman correlation

moderate t-statistics

Combine p-values

Fisher ( OC) 4 4 4 4

Stouffer ( OC) 4 4 4 4

AW ( OC) 4 4 4 4

minP ( OC) 4 4 4 4

maxP ( OC) 4 4 4 4

roP ( OC) 4 4 4 4

SR 4 4 4 4

PR 4 4 4 4

minMCC 4

Combine effect sizes
FEM 4 × × ×
REM 4 × × ×

combine ranks randProd 4 × × ×
4: the method can be applied on the corresponding type of outcome.

×: The method cannot be applied on the corresponding type of outcome.

OC: The corresponding one-sided correction method can be implemented in MetaDE.

incorporate new methods and functionalities.

2 Citing MetaQC, MetaDE and MetaPath

If you use MetaQC, MetaDE or MetaPath and publish your analysis, please report the version of the

program used and cite this paper [1]. If appropriate, you may also cite individual methodological paper

associated with each package:

• MetaQC:

Kangwan D. Don and George C. Tseng. MetaQC: objective quality control and inclusion/exclusion

criteria for genomic meta-analysis. Nucleic Acids Research , 40, e15, 2012.

• MetaDE:

Jia Li and George C. Tseng. An adaptively weighted statistic for detecting differential

gene expression when combining multiple transcriptomic studies.

Annals of Applied Statistics. 5:994-1019, 2012.

Shuya Lu, Jia Li, Chi Song, Kui Shen and George C Tseng. Biomarker Detection in

the Integration of Multiple Multi-class Genomic Studies.

Bioinformatics. 26:333-340, 2010

Xingbin Wang, Yan Lin, Chi Song, Etienne Sibille and George C Tseng.

Detecting disease-associated genes with confounding variable adjustment

and the impact on genomic meta-analysis: with application to major depressive disorder.

BMC Bioinformatics. 13:52,2012.

George C. Tseng, Debashis Ghosh and Eleanor Feingold. (2012) Comprehensive literature
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review and statistical considerations for microarray meta-analysis.

Nucleic Acids Research accepted.

• MetaPath:

Kui Shen and George C Tseng. Meta-analysis for pathway enrichment analysis when combining

multiple microarray studies.

Bioinformatics. 26:1316-1323,2010

3 Importing data into R

The most difficult aspect of learning to use a new package is importing your data. Once you have

mastered this step, you can experiment with other commands. In the following sections, we describe how

to prepare the data in Excel and import them into R.

3.1 Preparing data in Excel

Microarray data sets are generally comprised of three components: (1) the gene expression data; (2) the

outcome variable, such as disease status; and (3) patient-specific covariates, including treatment history

and additional clinical and demographic information. The primary aim of many gene expression studies

is to identify the DE genes by characterizing the relationship between the first two of these components,

the gene expression and the disease outcome. Thus, we only consider these two components. The data

should be arranged in a gene-by-sample format. That is, the columns represent genes and the rows

represent samples. We accept two types of format: unmatched data and matched data as shown in

Figure 2. If the probeIDs have not been summarized into unique gene symbols like in Figure 2(a)(i.e.

multiple probe IDs may match to the same gene symbol.) , the first column has the probeIDs and the

second column has the corresponding gene symbols, and the remaining columns have the expression

data matrix. If the gene symbols already serve as a unique ID, the first column can show gene symbols

and the expression data starts from the second column (Figure 2(b)). The second row has the outcome

variable which should parallel to the corresponding samples like in Figure 2(a). Similarly, for survival

data, the second row has the survival time and the third row has the censoring status like in 2(b). For

a binary outcome, 0 refers to ”normal” and 1 to ”diseased”. For a multiple class outcome, the first level

being coded as 0, the second as 1, and so on. For a survival outcome, 0 refers to individual who was

censored while 1 is used for patients who develop the event of interest. Then, you can save the data to

tab-delimited ASCII file or comma-delimeted file named by ”XX.txt” or ”XX.csv”.

3.2 Reading data into R

Once the data sets have been prepared and saved in a file directory. We provided a function, MetaDE.Read,

in MetaDE package, which can read the data sets into R and transform them to the format required for

MetaQC, MetaDE and MetaPath package. The arguments of this function are

MetaDE.Read(filenames, via = c("txt", "csv"), skip,matched=FALSE, log = TRUE)

where filenmaes is a vector of character strings specifying the names of data sets to read data from.

via is a character to indicate the type of the data sets. ”txt” means tab-delimited file and ”csv” comma-

delimited file. skip is a numeric vector consist of 1 or 2 , in which 1 means that gene expression data
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(a) Data un-matched (b) Data matched

Figure 2: Example of the organization of a dataset in Excel prior to importing into R.

starts from the 2nd row and 2 means we should skip 2 rows to read in the gene expression data. If the

ith data set is survival data, the corresponding element of skip should be 2 otherwise 1. matched is a

logical value to specify whether probeIDs have been matched into gene symbols or not. log is a logical

value to specify whether data sets need to be log2-transformed. The following is an example of the usage

of this function. We have nine datasets that studied the gene expressions between prostate cancer and

normal samples. The probeIDs were already annotated and matched to a unique gene symbol. So we

saved them in the Figure 2(b) format as tab delimited files with the first row representing outcome labels.

When we read the data, we only need to specify that the data is matched, and first row is sample labels

for all 9 studies.

> library(MetaDE)

> study.names<-c("Welsh","Yu","Lapointe","Varambally","Singh","Wallace","Nanni",

"Dhanasekaran","Tomlins")

> prostate.raw<-MetaDE.Read(study.names,skip=rep(1,9),via="txt",matched=T,log=F)

Tip: When the size of the data sets is too large, it may take a while to read them into R. Another

effective way is that you can read them separately into R and then save them as ”xxx.Rdata” using save

function and import them into R using load function:

> load("Dhanasekaran.rdata")

> load("Lapointe.rdata")

> load("Nanni.rdata")

> load("Singh.rdata")

> load("Tomlins.rdata")

> load("Varambally.rdata")

> load("Wallace.rdata")

> load("Welsh.rdata")

> load("Yu.rdata")

> prostate.raw<-list(

+ Welsh=Welsh,

+ Yu=Yu,

+ Lapointe=Lapointe,

+ Varambally=Varambally,
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+ Singh=Singh,

+ Wallace=Wallace,

+ Nanni=Nanni,

+ Dhanasekaran=Dhanasekaran,

+ Tomlins=Tomlins

+ )

4 Data preprocessing

4.1 Gene matching

Usually different microarray platforms use their own probe IDs. To perform metan-analysis, we need to

match probe IDs from different platforms to the unique official gene ID, such as ENTREZ ID or gene

symbol. In this package, we focus on the gene symbol. In MetaDE package, we provide two options for

the summarization when multiple probes (or probe sets) matched to an identical gene symbol: one option

is to take the average value of expression values across multiple probe IDs to represent the corresponded

gene symbol; another one is the ”IQR” method in which we selected the probe ID with the largest

interquartile range (IQR) of expression values among all multiple probe IDs to represent the gene. The

procedure of gene matching can be implemented by function MetaDE.match. Although ”average” method

has been widely used due to its simplicity, ”IQR” is biologically more reasonable and robust and is highly

recommended (e.g. see page 225 in Bioconductor Case study[9]). The arguments of this function are

MetaDE.match(x,pool.replicate=c("average","IQR"))

where x is a list of datasets. Each data set is a list with components, x-the gene expression matrix,y- the

outcome, and censoring.status (only for survival data). The arguments for pool.replicate are then:

• ”average”: the average method mentioned as above was chosen to perform gene matching;

• ”IQR”: the ”IQR” method mentioned as above was chosen to perform gene matching;

4.2 Gene merging

The multiple gene expression data sets may not be very well aligned by genes, and the number of genes

in each study maybe different. The MetaDE.merge function is used to extract the common genes across

multiple studies so that the merged data sets have the same genes in the same order. When we combine

a large number of studies, the number of common genes may be very small, so we allow to include

some gene appearing in most studies and missing in few studies. For example, if you set the argument

MVperc is 0.2, the genes appearing in 80% studies and missing in 20% studies will be included for the

analysis. The default is zero which means that we only include genes appearing in all the studies.

> prostate.merged<-MetaDE.merge(prostate.raw)

> dim(prostate.merged[[1]][[1]])

> [1] 1903 34

From the output, we see that there are total 1903 common genes among 9 studies.

7



4.3 Gene filtering

Biologically, it is likely that most genes are either un-expressed or un-informative. In gene expression

analysis to find DE genes, these genes contribute to the false discoveries, so it is desirable to filter out

these genes prior to analysis. After genes are matched across studies, the unique gene symbols are

available across all studies. Two sequential steps of gene filtering can be performed. In the first step,

we filter out genes with very low gene expression that are identified with small average expression values

across majority of studies. Specifically, mean intensities of each gene across all samples in each study

are calculated and the corresponding ranks are obtained. The sum of such ranks across all studies of

each gene is calculated and genes with the smallest α% rank sum (small mean intensity) are considered

un-expressed genes (i.e. small expression intensities) and were filtered out. Similarly, in the second

step, we filter out non-informative (small variation) genes by replacing mean intensity in the first step

with standard deviation. Genes with the lowest β% rank sum of standard deviations were filtered out.

Finally, the total number of matched genes is G× (1− α)× (1− β), which are used for further analysis.

The procedure of gene filtering can be implemented by function MetaDE.filter. The arguments of this

function are

MetaDE.filter(x,DelPerc=c(alpha,beta)),

where x is a list of data sets described as before; argument DelPerc is a numeric vector of length 2,

which specify how many percent of genes need to be filtered out during the two sequential steps of gene

filtering.

> prostate.filtered<-MetaDE.filter(prostate.merged,c(0.3,0.3))

> dim(prostate.filtered[[1]][[1]])

> [1] 932 34

Here, we first filtered out 30% un-expressed genes and then 30% non-informative genes. Finally, 932 =

1903× (1− 0.3)× (1− 0.3) genes were remained for further analysis.

5 The MetaQC package

The MetaQC package provides two main functions, MetaQC and runQC to implement the objective quality

control and inclusion/exclusion criteria for genomic meta-Analysis.

5.1 The MetaQC

The MetaQC function is used to implement the six quantitative quality control measures. For the default

interface, the arguments of the function are

MetaQC(DList, GList, isParallel = FALSE, nCores = NULL,

useCache = TRUE, filterGenes = TRUE,

maxNApctAllowed=.3, cutRatioByMean=.4, cutRatioByVar=.4, minNumGenes=5,

verbose = FALSE, resp.type = c("Twoclass", "Multiclass", "Survival"))

where

• DList: Either a list of all data matrices (Case 1) or a list of lists (Case 2); The first case is simplified

input data structure only for two classes comparison. Each data name should be set as the name of
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each list element. Each data should be a numeric matrix that has genes in the rows and samples in

the columns. Row names should be official gene symbols and column names be class labels. For the

full description of input data, you can use the second data format. Each data is represented as a

list which should have x, y, and geneid (geneid can be replaced to row names of matrix x) elements,

representing expression data, outcome or class labels, and gene ids, respectively. Additionally, in

the survival analysis, censoring.status should be set.

• GList: The location of a file which has sets of gene symbol lists such as gmt files. By default, the

gmt file will be converted to list object and saved with the same name with ”.rda”. Alternatively,

a list of gene sets is allowed; the name of each element of the list should be set as a unique pathway

name, and each pathway should have a character vector of gene symbols.

• isParallel: Whether to use multiple cores in parallel for fast computing. By default, it is false.

• nCores: When isParallel is true, the number of cores can be set. By default, all cores in the

machine are used in the unix-like machine, and 2 cores are used in windows.

• useCache: Whether imported gmt file should be saved for the next use. By default, it is true.

• filterGenes: Whether to use gene filtering (recommended).

• maxNApctAllowed: Filtering out genes which have missing values more than specified ratio

(Default .3). Applied if filterGenes is TRUE.

• cutRatioByMean: Filtering out specified ratio of genes which have least expression value (Default

.4). Applied if filterGenes is TRUE.

• cutRatioByVar: Filtering out specified ratio of genes which have least sample wise expression

variance (Default .4). Applied if filterGenes is TRUE.

• minNumGenes: Mininum number of genes in a pathway. A pathway which has members smaller

than the specified value will be removed. verbose Whether to print out logs.

• resp.type: The type of response variable. Three options are: ”Twoclass” (unpaired), ”Multiclass”,

”Survival.” By default, Twoclass is used

First you can create an QC object with the following code:

> Data.QC<-list()

> for(i in 1:9){

+ colnames(prostate.filtered[[i]][[1]])<-prostate.filtered[[i]][[2]]

+ Data.QC[[i]]<-impute.knn(prostate.filtered[[i]][[1]])$data

+ }

> names(Data.QC)<-names(prostate.filtered)

> ProstateQC <- MetaQC(Data.QC, "c2.all.v3.0.symbols.gmt", filterGenes=F,verbose=TRUE,

+ isParallel=F,resp.type="Twoclass")

5.2 The runQC function

The runQC function is a utility function to RunQC method in MetaQC object. The usage and arguments

are listed below
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runQC(QC, nPath=NULL, B=1e4, pvalCut=.05,

pvalAdjust=FALSE, fileForCQCp="c2.all.v3.0.symbols.gmt")

• QC: A proto R object which obtained by MetaQC function.

• nPath: The number of top pathways which would be used for EQC calculation. The top pathways

are automatically determined by their mean rank of over significance among given studies. It is

important that gene sets used for EQC are expected to have higher correlation than background.

For better performance, this should be set as a reasonably small number.

• B: The number of permutation tests used for EQC calculation. More than 1e4 is recommended.

• pvalCut: P-value threshold used for AQC calculation.

• pvalAdjust: Whether to apply p-value adjustment due to multiple testing (B-H procedure is

used).

• fileForCQCp: Gene set used for CQCp calculation. Usually larger gene set is used than EQC

calculation.

Then, the users can run QC procedure with

> runQC(ProstateQC, B=1e4, fileForCQCp="c2.all.v3.0.symbols.gmt")

5.3 Summary output and visualization in MetaQC

The users can use the print function to view the information of data sets and the table of the quantitative

quality control measures.

> print(ProstateQC)

Number of Studies: 9

Dimension of Each Study:

Welsh Yu Lapointe Varambally Singh Wallace Nanni Dhanasekaran Tomlins

Genes 932 932 932 932 932 932 932 932 932

Samples 34 146 103 13 102 89 30 28 66

Study IQC EQC CQCg CQCp AQCg AQCp Rank

1 Yu 8.83 3.82 307.65 32.81 3.3 16.37 1.75

2 Welsh 5.19 2.28 307.65 43.6 6.17 13.42 2.42

3 Lapointe 4.47 3.22 16.41 37.8 2.09* 21.36 2.83

4 Varambally 4.89 2.49 5.28 10.95 1.18* 2.76 4.67

5 Singh 3.39 1.84* 8.38 10.2 2.04* 10.71 5.17

6 Wallace 6.32 1.85* 0.01* 18.74 0.45* 0.23* 6.00

7 Nanni 1.79* 3.6 0.22* 1.25* 0.24* 2.25* 6.50

8 Tomlins 1.55* 1.34* 0.02* 1.95* 0.68* 0.19* 7.67

9 Dhanasekaran 0.01* 1.12* 0.04* 8.87 0.45* 0.03* 8.00

The users can also draw the PCA biplot (see Figure 3) for assisting visualization and decision with

plot(ProstateQC)
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Figure 3: PCA biplot of QC measures in nine prostate studies.

From above table and the PCA biplot(Figure3), although the first two PCs also captured high percentage

of variance (83%), the studies were more scattered in the biplot and even good performing studies had

quite different performance when judged by different QC criteria. For example, Varambally and Wallace

had better scores in IQC and EQC but not in CQC and AQC while Welsh, Lapointe and Singh, had

better performance in CQC and AQC but not IQC and EQC. Yu had performed the best in all criteria.

In considering sample size, array platform and QC measures, we regarded the bottom three studies

(Nanni, Tomlins and Dhanasekaran) as definite exclusion cases and remove them from further analysis

in MetaDE and MetaPath.

Based on the results of MetaQC, three studies,”Nanni”,”Dhanasekaran” and ”Tomlins” need to be

excluded for further analysis. To remove impact on the results of meta-analysis of these three studies,

we need re-merge the studies and re-filter genes:

> study.names<-c("Welsh","Yu","Lapointe","Varambally","Singh","Wallace")

> data.QC.raw<-list()

> for(i in 1:length(study.names)){

+ data.QC.raw[[i]]<-prostate.raw[[study.names[[i]]]] + }

> data.QC.merged<-MetaDE.merge(data.QC.raw)

> dim(data.QC.merged[[1]][[1]])

[1] 6940 34

> data.QC.filtered<-MetaDE.filter(data.QC.merged,c(0.2,0.2))

> dim(data.QC.filtered[[1]][[1]])

>[1] 4441 34
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Figure 4: the flowchart presents a brief overview of the main functions for conducting meta-analysis.

We saw that there are total 6940 common genes across these six studies. Then, we first filtered out

20% un-expressed genes and then 20% non-informative genes. Finally,4441 = 6940× (1− 0.2)× (1− 0.2)

genes were remained for further analysis.

6 The MetaDE package

In current version, MetaDE package provides functions for conducting 12 major meta-analysis methods

for differential expression analysis (see Table 1). In Figure 4, the flowchart presents a brief overview of

the main functions implementing these methods.

6.1 Perform analysis for individual stuy

Before beginning with a meta-analysis, one must first obtain a set of p-values or effect size estimates with

their corresponding sampling variances. The MeteDE package provides the ind.analysis() function,

which can be used to perform various test statistics for DE analysis based on the type of the outcome

and choice of p-value calculation by either fast parametric or robust permutation inferences. For the

default interface, the arguments of the function are

ind.analysis(Dlist, ind.method = c("regt", "modt", "pairedt",

"pearsonr", "spearmanr",

"F", "logrank"), miss.tol =0.3, nperm = NULL, tail, ...)

where Dlist is the input variable,which is a list of datasets and each data set is a list with components:

x- the gene expression matrix; y- the outcome variable (see 3.1),for survival data, this is the survival

time of patients; censoring.status- the censoring status. argument ind.mehtodis a character vector

specifying which test statistic should be used to calculated the p-values in each study.The options for

argument ind.method are then:

• regt: The regular t-statistics.

• modt: The moderated-t statstics.
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• pairedt: The paired t-statistics.

• pearsonr: The Pearson’s product correlation statistics.

• F: The F-statistics from one way anova.

• spearmanr: The Spearman’s rank correlation statistics.

• logrank: The log-rank statistics.

nperm is an argument to specify the choice of p-value calculation by fast parametric or robust permuta-

tion inferences. If it is NULL(default), the parametric method is used; If it is an integer, the permutation

method is used, and the integer is the number of permutations used to infer the p-values. tail is a

character string specifying the direction of alternative hypothesis , must be one of ”low”(left-side p-

value), ”high”(right-sided p-value) or ”abs”(two-sided p-value). The users can choose the appropriate

test statistics based on the type of outcome in their data sets as described in Table 1. For example, if

your studies are pair-designed, you may chose ”pairedt” as the ind.methos.

> ind.Res1<-ind.analysis(data.QC.filtered,ind.method=rep("modt",6),nperm=300,tail="abs")

Cluster size 4436 broken into 2416 2020

Cluster size 2416 broken into 510 1906

Done cluster 510

Cluster size 1906 broken into 1070 836

Done cluster 1070

Done cluster 836

Done cluster 1906

Done cluster 2416

Cluster size 2020 broken into 1533 487

Cluster size 1533 broken into 611 922

Done cluster 611

Done cluster 922

Done cluster 1533

Done cluster 487

Done cluster 2020

gene: GRB10 SCARB1 FAM179B OLFML2A CUL9 will not be analyzed due to > 0.3 missing

dataset 1 is done

dataset 2 is done

dataset 3 is done

dataset 4 is done

dataset 5 is done

dataset 6 is done

The output of the "ind.analysis"function is a list with components: stat–the value of test statistic for

each gene; p– the p-value for the test for each gene; bp the p-value from nperm permutations for each

gene. The bp values from the output will be used for the meta analysis. But it can be NULL if you

chose asymptotic results. We can look at the results with:

> head(ind.Res1$stat)

Welsh Yu Lapointe Varambally Singh Wallace
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KLK3 -2.7788918 -2.42749548 -0.7689485 -0.9014151 -3.085452640 1.4452094

ACPP -0.8785095 0.05370996 1.0796471 0.5908097 -1.583299947 2.4004244

KLK2 -2.9347306 -2.43864422 -0.3074178 -0.6470538 -3.050150236 -1.8343092

ACTA2 2.2738735 3.13297708 5.0134537 0.3519709 -0.379635185 0.9729776

MSMB 0.3767477 2.18256555 1.2681645 0.6959927 -1.467310235 2.8007777

TAGLN 2.4506658 2.90666452 4.1497288 0.6672679 -0.005584158 0.9778782

> head(ind.Res1$p)

Welsh Yu Lapointe Varambally Singh Wallace

KLK3 0.0001726338 7.655933e-05 1.298114e-01 0.1019530 7.505817e-07 1.040832e-02

ACPP 0.1183344592 9.137469e-01 3.873084e-02 0.2652458 6.951888e-03 1.666291e-04

KLK2 0.0000900698 7.430759e-05 5.338330e-01 0.2250124 7.505817e-07 2.090370e-03

ACTA2 0.0010553179 1.000000e-20 1.000000e-20 0.4974007 4.370510e-01 6.469114e-02

MSMB 0.4604653607 2.852210e-04 1.723925e-02 0.1944442 1.107183e-02 3.752909e-05

TAGLN 0.0005786985 5.254072e-06 1.000000e-20 0.2119770 9.906125e-01 6.352323e-02

The MetaDE package also provides a function ind.cal.ES to calculate various effect sizes (and the

corresponding sampling variances) that are commonly used in meta-analyses.The arguments for this

interface are

ind.cal.ES(x, paired, nperm = NULL)

where arguments y and l are the gene expression matrix and the vector of labels of outcome, respectively;

paired is a vector of logical values to specify whether the corresponding study is paired design or not.

If the study is pair-designed, the effect sizes (corresponding variances) are calculated using the formula

in morris’s paper[18], otherwise calculated using the formulas in choi et al[3]. Argument nperm is

an integer to specify the number of permutations.If it is not ”NULL”, the permutated effect sizes and

corresponding variances will be calculated.

> ind.Res2<-ind.cal.ES(data.QC.filtered,paired=rep(F,6),nperm=300,miss.tol=0.3)

Cluster size 4436 broken into 2416 2020

Cluster size 2416 broken into 510 1906

Done cluster 510

Cluster size 1906 broken into 1070 836

Done cluster 1070

Done cluster 836

Done cluster 1906

Done cluster 2416

Cluster size 2020 broken into 1533 487

Cluster size 1533 broken into 611 922

Done cluster 611

Done cluster 922

Done cluster 1533

Done cluster 487

Done cluster 2020

gene: GRB10 SCARB1 FAM179B OLFML2A CUL9 will not be analyzed due to > 0.3 missing

> head(ind.Res2$ES)

Welsh Yu Lapointe Varambally Singh Wallace
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KLK3 1.5848901 0.60182438 0.21573880 0.9646776 0.704811088 -0.6095348

ACPP 0.5985059 -0.01214459 -0.34942015 -0.5815326 0.361049284 -1.2022999

KLK2 1.9979439 0.54617644 0.08703751 0.6880705 0.690029042 0.6630656

ACTA2 -1.3935275 -0.83448418 -1.99178219 -0.4761814 0.093401267 -0.5050199

MSMB -0.1853324 -0.46117042 -0.40327690 -0.6051680 0.331568663 -1.0163406

TAGLN -1.4227497 -0.83143018 -1.51385329 -0.6631125 0.001375977 -0.4906553

> head(ind.Res2$Var)

Welsh Yu Lapointe Varambally Singh Wallace

KLK3 0.1880505 0.02897068 0.04074521 0.3453162 0.04166586 0.06658002

ACPP 0.1563789 0.02773080 0.04111197 0.3225307 0.03986977 0.07261368

KLK2 0.2098138 0.02875190 0.04055605 0.3277331 0.04156479 0.06696273

ACTA2 0.1796687 0.03011510 0.05977751 0.3182449 0.03927353 0.06592559

MSMB 0.1516162 0.02845864 0.04130875 0.3236095 0.03976968 0.07029583

TAGLN 0.1808790 0.03009768 0.05164428 0.3264360 0.03923078 0.06584524

6.2 Perform meta-analysis

The various meta-analyses can be implemented by three main functions, MetaDE.radata(), MetaDE.pvalue()

and MetaDE.ES(), in MetaDE package. The arguments of function

MetaDE.rawdata() are given by

MetaDE.rawdata(x, ind.method = c("modt", "regt", "pairedt", "F",

"pearsonr", "spearmanr", "logrank"), meta.method =

c("maxP", "maxP.OC", "minP", "minP.OC", "Fisher",

"Fisher.OC", "AW", "AW.OC", "roP", "roP.OC",

"Stouffer", "Stouffer.OC", "SR", "PR", "minMCC",

"FEM", "REM", "rankProd"), paired = NULL, miss.tol =

0.3, rth = NULL, nperm = NULL, ind.tail = "abs",

asymptotic = FALSE, ...)

As above,x is the raw data (the gene expression matrices and the labels of outcome),which is a list of a list

datasets and a list of labels; the argument ind.method is the same as that in function ind.analysis();

The various meta-analysis methods described in Table 1 that can be specified via the meta.method

argument are then:

• maxP: The maximum p-value method;

• maxP.OC: The maximum p-value with one-sided correction;

• minP: The minimum p-value method;

• minP.OC: The minimum p-value method with one-sided correction;

• Fisher The Fisher’s method;

• Fisher.OC: The Fisher’s method with one-sided correction;

• AW: The adaptive weight method;

• AW.OC: The adaptive weight method with one-sided correction;
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• roP: The r-th ordered p-value method;

• roP.OC: The r-th ordered p-value method with one-sided correction;

• Stuoffer: The Stuoffer’s method;

• Stouffer.OC: The Stuoffer’s method with one-side correction;

• minMCC: The the minimum multi-class correlation method [15];

• rankProd: The rank product method [14];

• SR:The naive rank summation method[6];

• PR:The naive rank product method[6];

• FEM: The fixed-effect model method [3];

• REM: The random-effect model method [3];

If the meta.method is chosen as ”roP” or ”roP.OC”, an integer need input via argument rth to specify

which rth ordered p-value as the statistic; If the argument asymptotic is TRUE, then the parametric

method is used in meta-analysis to calculate the p-values permutation should be used otherwise; the

argument nperm is the same as in function ind.analysis().

If the raw data sets are available, all the meta-analysis mentioned in Table 1 can be implemented

with this function. This function offers much wider options of analysis methods for both individual

dataset analysis and meta-analysis. It is suitable to researchers who want to obtain an analysis easily

and tailor their choices to the biological questions of interest. For example, if one is interested in finding

genes that are differentially expressed between cases and controls in all datasets. One could select

”moderated t-test” from the individual analysis and select ”maxP” from the meta-analysis to combine

the p-values from moderated t-test. The researchers may also want to make a comparison among different

meta-analysis methods. For example, the users want to make a comparison among four meta-analysis

methods, ”Fisher”, ”maxP”, ”roP”, and ”AW”. This goal can be done with:

> MetaDE.Res1<-MetaDE.rawdata(data.QC.filtered,ind.method=rep("modt",6),

meta.method=c("Fisher","maxP","roP","AW"),rth=4,nperm=300,asymptotic=F)

If p-values or effect sizes (and corresponding variances) have been calculated already, for example by

other methods not used in functions ind.analysis() or ind.cal.ES() with the help of other software,

then the meta-analysis can be implemented by function MetaDE.pvalue() or MetaDE.ES() to combine

p-values and effect sizes across studies respectively. The arguments of these two functions are given by

MetaDE.pvalue(x, meta.method = c("maxP", "maxP.OC", "minP",

"minP.OC", "Fisher", "Fisher.OC", "AW", "AW.OC",

"roP", "roP.OC", "Stouffer", "Stouffer.OC", "SR",

"PR"), rth = NULL, miss.tol = 0.3, asymptotic = FALSE)

, where argument x is a list with components:p–a list of p values for each dataset;bp– a list of p values

calculated from permutation for each dataset. This part can be NULL if you just have the p-values

from your own method. If the second object of bp is NULL, the parametric method is then used in

meta-analysis.
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MetaDE.ES(x, meta.method = c("FEM", "REM"))

, where x is a list with components; ES– the observed effect sizes;Var– the observed Variances correspond-

ing to ES; perm.ES–the effect sizes calculated from permutations; perm.Var–the corresponding vari-

ances calculated from permutations. When perm.ES and perm.Var are "NULL",the parametric method

is used to calculated the p-values,otherwise permutation method is used. argument meta.method is a

character to specify whether a fixed- or a random/mixed-effects model should be fitted. In the following,

we randomly generated p-values for 10 genes in 10 studies, and illustrated how to combine them using

the Fisher’s and maxP methods in the "MetaDE.pvalue"function.

> set.seed(123)

> x<-list()

> x$p<-matrix(runif(10*10),10,10)

> x$bp<-NULL

> res1<-MetaDE.pvalue(x,meta.method=c("Fisher","maxP"))

> head(res1$meta.analysis$pval)

Fisher maxP

[1,] 0.3841967 0.6860759

[2,] 0.8459936 0.3576885

[3,] 0.8818869 0.1059398

[4,] 0.1440220 0.9441530

[5,] 0.1479757 0.5412986

[6,] 0.1901586 0.3480009

> set.seed(124)

> x<-list()

> x$ES<-matrix(rnorm(10*10),10,10)

> x$Var<-matrix(rchisq(10*10,5),10,10)

> res2<-MetaDE.ES(x,meta.method="REM")

> head(res2$pval)

[1] 0.5193695 0.8438519 0.6652518 0.9381124 0.4649985 0.9796356

6.3 Summary output and visualization in MetaDE

The MetaDE package provides several functions for creating plots that are frequently used in meta-

analyses.For example,the heatmap.sig.genes() function is used to create the heatmaps plots of the DE

genes under a specified p-value or FDR threshhold across studies. Figure 5 is an example showing the

identified genes between cases (1) and controls (0) across two studies. The heatmap (Figure 5) can be

generated with

> label1<-rep(0:1,each=5)

> label2<-rep(0:1,each=5)

> exp1<-cbind(matrix(rnorm(5*200),200,5),matrix(rnorm(5*200,2),200,5))

> exp2<-cbind(matrix(rnorm(5*200),200,5),matrix(rnorm(5*200,1.5),200,5))

> x<-list(list(exp1,label1),list(exp2,label2))

> meta.res2<-MetaDE.rawdata(x=x,ind.method=c("modt","modt"),meta.method=c("Fisher","maxP"),nperm=200)

Please make sure the following is correct:

*You input 2 studies
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Figure 5: The heatmap plot.

*You selected modt modt for your 2 studies respectively

*They are not paired design

* Fisher maxP was chosen to combine the 2 studies,respectively

dataset 1 is done

dataset 2 is done

Permutation was used instead of the asymptotic estimation

> heatmap.sig.genes(meta.res2, meta.method="maxP",fdr.cut=1,color="GR")

To assess performance of these different methods, we applied two evaluation criteria. The users

may want to compare the numbers of detected DE genes from different methods under different p-value

thresholds using detection competency curves (x-axis: p-value or FDR threshold; y-axis: number of

detected DE genes)(see Figure 6). This can be implemented with the draw.DEnumber() function.

> mylty<-rep(c(1,2),c(6,4))

> mycol<-c(rep("black",6),c("red","green","blue","orange"))

> mylwd<-rep(c(1,2),c(6,4))

> mypch<-1:10

> draw.DEnumber(MetaDE.Res1,0.05,mlty=mylty,mcol=mycol,mlwd=mylwd,mpch=mypch,FDR=T)

To make a prettier figure, the users can specify the line type, line color, line width and line symbol

for each method. For example, here, we set the lines of 6 individual analysis with the same line type,

line width and line color ( ”black”) while lines for each meta-analysis method have different line types,

widths and colors. It is clearly seen that meta-analysis usually detects more candidate markers, except

for maxP (which we know is a very conservative meta-analysis procedure [26]). To view the exact number

of DE genes detected by different methods, the function count.DEnumber() can be used to generate the
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Figure 6: The detection competency curves to compare the DE numbers detected in individual analysis

and meta-analysis.

tables in which the numbers of DE genes detected by different methods under various p-value and FDR

thresholds are listed.

> count.DEnumber(MetaDE.Res1,p.cut=c(0.001,0.005),q.cut=c(0.01,0.05))

$pval.table

Welsh Yu Lapointe Varambally Singh Wallace Fisher maxP roP AW

p=0.001 461 478 713 199 533 1060 2001 527 1188 1959

p=0.005 724 772 986 396 835 1520 2539 818 1643 2475

$FDR.table

Welsh Yu Lapointe Varambally Singh Wallace Fisher maxP roP AW

FDR=0.01 466 489 794 99 581 1354 2602 560 1518 2511

FDR=0.05 923 954 1255 366 1125 2054 3379 1034 2295 3290

7 The MetaPath package

The MetaPath package provides a major function MAPE to implement the Meta-analysis for Pathway En-

richment (MAPE) methods introduced [17]. The function automatically performs MAPE G (integrating

multiple studies at gene level), MAPE P (integrating multiple studies at pathway level) and MAPE I

(a hybrid method integrating MAEP G and MAPE P methods). MAPE G and MAPE P have comple-

mentary advantages and detection power depending on the data structure. In general, the integrative

form of MAPE I is recommended to use. In the case that MAPE G (or MAPE P) detects almost none
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pathway, the integrative MAPE I does not improve performance and MAPE P (or MAPE G) should be

used.

7.1 The MAPE function

MAPE(arraydata, class.label, censoring.status = NULL, DB.matrix, size.min = 15, size.max = 500,

nperm = 500, stat, rth.value = NULL, resp.type, permutation = "sample")

• arraydata: The arraydata is a list of microarray data sets. Each microarray data set can be either

an eSet or a list. If the microarray data set is a list, then it includes five elements as follows: x–

Cexprs data;y–C the phenotype of interests z–C censoring.status if applicable. 1 stands for the

event occurred and 0 stands for censored. 4)geneid 5)samplename If the microarray data set is an

eSet, the users need to indicate the slots for phenotype of interests and slots for the censoring.status

if applicable. (See examples) class.label The slot for the phenotype of interests. It is only applicable

when arraydata is an eSet.

• censoring.status: The slot for the censoring.status. It is only applicable when arraydata is an

eSet.

• DB.matrix: The pathway database in a matrix form. Each row is a pathway and each column is

a gene. Zeros stands for that the gene does not exist in the pathway and one stands for that the

gene exists in the pathway.

• size.min: The minimum size of pathways to be considered. The default value is 15.

• size.max: The maximum size of pathways to be considered. The default value is 500.

• nperm: Number of permutations to be performed.

• stat: The meta-analysis statistics to be used to combine two studies. It is one of the four values:

’minP’,’maxP’,’rth’,’Fisher’.

• rth.value: The value of the rth statistics if the meta-anlaysis statistic is ’rth’. For example,

rth.value=0.6.

• resp.type: The type of phenotype. It is one of the three values: ”discrete”, ”continuous”, ’sur-

vival”.

• permutation: The options for using sample permutation or gene permutation when performing

enrichment analysis. it is one of the two values: ’gene’ and ’sample’. The default option is sample

permutation.

7.2 Summary output and visualization in MetaDE

The MetaPath package also provides functions to draw the heatmap(see Figure 7(a) of q-values of path-

ways and a Venn diagram (see Figure 7(b)) to show the overlapped pathways identified by three MAPE

methods.

> Prostate.data=vector(mode = "list", length =length(data.QC.filtered) )

> for(t1 in 1:length(data.QC.filtered)){

+ temp<-impute.knn(data.QC.filtered[[t1]][[1]])$data
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Figure 7: (a) The heatmap of the q-values of pathways detected by MAPE I under q-value=0.2 threshold.

(b) The Ven diagram of the pathways detected by three MAPE methods.

+ Prostate.data[[t1]]=list(x=temp, y=data.QC.filtered[[t1]][[2]],

+ geneid=rownames(data.QC.filtered[[1]][[1]]),

+ samplename=paste("s",1:ncol(data.QC.filtered[[t1]][[1]]),sep=""))

+ }

> start<-Sys.time()

> prostate.MAPE<-MAPE(arraydata=Prostate.data,

+ DB.matrix=DB.matrix,resp.type="discrete",

+ stat="Fisher",nperm=300,permutation="sample",size.min=15,size.max=500)

Performing MAPE_P analysis...

Performing MAPE_G analysis...

Performing MAPE_I analysis...

> MetaPath.Time<-Sys.time()-start

> print(MetaPath.Time)

Time difference of 18.46028 mins

> plot.MAPE(prostate.MAPE, cutoff=.2, MAPE.method="MAPE_I")

Majority of the detected pathways appeared to be cancer related. Single study analyses showed weak

pathway enrichment and detected almost no pathways(see Figure 7(a)). MAPE P and MAPE G ap-

peared to have complementary detection power (identified 23 and 15 pathways with only 5 in common).

MAPE I detected the largest number of pathways (34 pathways).

8 Example

In previous sections, we described the usages of the major functions in each of three packages. To

demonstrate overall application of MetaQC, MetaDE and MetaPath, we collected nine prostate cancer

21



Table 2: Summary information of nine prostate studies.

Author Year Platform Sample size(Normal/Primary) Source

Dhanasekaran et al. 2001 cDNA 28(14/14) www.pathology.med.umich.edu

Welsh et al. 2001 HG-U95A 34(9/25) public.gnf.org/cancer/prostate/

Singh et al. 2002 HG-U95Av2 102(50/52) www.broad.mit.edu/

Lapointe et al. 2004 cDNA 103(41/62) GSE3933

Yu et al. 2004 HG-U95Av2 146 (81/65) GSE6919

Varambally et al. 2005 HG-U133 Plus2 13 (6/7) GSE3325

Nanni et al. 2006 HG-U133A 30 (7/23) GSE3868

Tomlins et al. 2006 cDNA 57(17/30) GSE6099

Wallace et al. 2008 HG-U133A2 89 (20/69) GSE6956

studies (Welsh, Yu, Lapointe, Varambally, Singh, Wallace, Nanni, Tomlins and Dhanasekaran) which

contain normal and primary cancer samples. Details of the nine studies are listed in Table 8. This

example data can be downloaded at http://www.biostat.pitt.edu/bioinfo/software.htm.

The users can use the following code to replicate the results in previous sections:

rm(list=ls())

#--------------------importing data into R--------------------------------------------------------#

library(MetaDE)

study.names<-c("Welsh","Yu","Lapointe","Varambally","Singh","Wallace","Nanni","Dhanasekaran",

"Tomlins")

prostate.raw<-MetaDE.Read(study.names,skip=rep(1,9),via="txt",matched=T,log=F)

#--------------------merge and filter data---------------------------------------------------------#

prostate.merged<-MetaDE.merge(prostate.raw)

dim(prostate.merged[[1]][[1]])

prostate.filtered<-MetaDE.filter(prostate.merged,c(0.3,0.3))

dim(prostate.filtered[[1]][[1]])

#--------------------MetaQC------------------------------------------------------------------------#

library(MetaQC)

Data.QC<-list()

for(i in 1:9){

colnames(prostate.filtered[[i]][[1]])<-prostate.filtered[[i]][[2]]

Data.QC[[i]]<-impute.knn(prostate.filtered[[i]][[1]])$data

print(dim(Data.QC[[1]]))

}

names(Data.QC)<-names(prostate.filtered)

start<-Sys.time()

ProstateQC<-MetaQC(Data.QC, "c2.all.v3.0.symbols.gmt", filterGenes=F,verbose=TRUE,isParallel=TRUE,

nCores=12, resp.type="Twoclass")

runQC(ProstateQC, B=1e4, fileForCQCp="c2.all.v3.0.symbols.gmt")

QC_time<-Sys.time()-start

png(filename = "Prostate_QC0421.png", width = 3500, height = 3500,res=600)

plot(ProstateQC)
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dev.off()

jpeg(filename = "Prostate_QC0421.jpeg", width = 3500, height = 3500,res=600)

plot(ProstateQC)

dev.off()

#-----------------------------------------------------------------------------------------------#

# (1) To remove the three studies ("Nanni","Dhanasekaran","Tomlins") with bad quality

# (2) To remerge the remaining six studies

# (3) To re-filter the data

#-----------------------------------------------------------------------------------------------#

study.names<-c("Welsh","Yu","Lapointe","Varambally","Singh","Wallace")

data.QC.raw<-list()

for(i in 1:length(study.names)){

data.QC.raw[[i]]<-prostate.raw[[study.names[[i]]]]

}

names(data.QC.raw)<-study.names

data.QC.merged<-MetaDE.merge(data.QC.raw)

dim(data.QC.merged[[1]][[1]])

data.QC.filtered<-MetaDE.filter(data.QC.merged,c(0.2,0.2))

dim(data.QC.filtered[[1]][[1]])

#---------------------- MetaDE-----------------------------------------------------------------#

start<-Sys.time()

MetaDE.Res<-MetaDE.rawdata(data.QC.filtered,ind.method=rep("modt",6),meta.method=c("Fisher","maxP",

"roP","AW"),rth=4,nperm=300,asymptotic=F)

b<-Sys.time()-start

print(b)

mylty<-rep(c(1,2),c(6,4))

mycol<-c(rep("black",6),c("red","green","blue","orange"))

mylwd<-rep(c(1,2),c(6,4))

mypch<-1:10

png(filename = "MetaDE_Prostate0421.png", width = 3500, height = 3500,res=600)

draw.DEnumber(MetaDE.Res,0.05,mlty=mylty,mcol=mycol,mlwd=mylwd,mpch=mypch,FDR=T)

dev.off()

#--------------------------------MetaPath------------------------------------------------------#

library(MetaPath)

library(GSA)

library(Biobase)

library(genefilter)

library(GSEABase)

library(limma)

Prostate.data=vector(mode = "list", length =length(data.QC.filtered) )

for(t1 in 1:length(data.QC.filtered)){

temp<-impute.knn(data.QC.filtered[[t1]][[1]])$data

Prostate.data[[t1]]=list(
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x=temp,

y=data.QC.filtered[[t1]][[2]],

geneid=rownames(data.QC.filtered[[1]][[1]]),

samplename=paste("s",1:ncol(data.QC.filtered[[t1]][[1]]),sep=""))

}

data(DB.matrix)

start<-Sys.time()

prostate.MAPE<-MAPE(arraydata=Prostate.data,DB.matrix=DB.matrix,resp.type="discrete",stat="Fisher",

nperm=300,permutation="sample",size.min=15,size.max=500)

MetaPath.Time<-Sys.time()-start

subset(prostate.MAPE$qvalue, MAPE_I<0.2)

plot.MAPE(prostate.MAPE, cutoff=.2, MAPE.method="MAPE_I")

9 Reporting Bugs and Errors

Please contact us with any bug or difficulty you may discover while running this program. Please feel

free to contact:Dongwan D. Kang (donkang75@gmail.com) for the MetaQC package; Xingbin Wang( xing-

binw@gmail.com) or Jia Li (jiajiaysc@gmail.com) for the MetaDE package; Kui Shen (kuishen@gmail.com)

for the MetaPath package.
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