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1. A logistic function-based method for using TF gene expression levels

In DREM 2.0 it is possible to utilize the expression level of a transcription factor (TF) to
influence the learning of the classifier in the input-output hidden Markov model (IOHMM).
The idea is that TFs that are over- or under-expressed between time points should have a
higher influence.

The expression ratio x of a TF between two time points is incorporated by using a
modified version of the logistic function

(1) fw(x) =
1

1 + e−x·w
.

A shifted version of the logistic function, f∗w(x), reports 0 if no change in the expression
ratio x is observed. Also instead of [0,1], the function outputs values in the range [-1,1] to
allow for negative influence in the case of under expression.

(2) f∗w(x) = sign(x) ·
(

2

1 + e−x·w
− 1

)
,

1
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Figure 1. Illustration of the shifted version of the logistic function used by
DREM 2.0 for scaling expression levels used in classifier learning. Output
of the shifted logistic function in Eq. (2) for different weight w.

where sign(x) denotes the sign of the real-valued expression ratio. We call w in Eq. (2)
the expression scaling weight, which controls the steepness of the function, see Fig. 2. TFs
can be efficient at low expression levels or activated post-transcriptionally, therefore the
user can define a minimum threshold, minExpTF. select(x) denotes the minimum of both
according to the following formula:

(3) select(x) =

{
f∗w(x), if abs(f∗w(x)) ≥ minExpTF,

sign(x) ·minExpTF, else
,

where abs(z) denotes the absolute value of a real valued number z.

The function select(x) is used in the following way. In the previous version of DREM a
classifier could use pairwise binding information for a TF t to a gene g, denoted Bg, with
Bg ∈ {−1, 1, 0} representing a repressive, an activatory or no regulatory role for TF t on
gene g, respectively. With expression scaling activated in DREM 2.0 we define the quantity
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B′g:

(4) B′g = select(xt) · Bg ,
where xt denotes the gene expression ratio of the TF t and B′g ∈ [−1, 1]. For the TF t we
replace all values Bg with B′g before learning the IOHMM. This corresponds to scaling the
binding value of TF t on gene g according to the logistic function f∗w(xt).

2. Collecting protein-DNA interaction data sets

For D. Melanogaster we used the physical network data from the modENCODE consor-
tium [6]. 158,558 predicted protein-DNA interactions were formatted for DREM 3-column
format (the format is explained in Additional file 2).

We extracted 11,355 static protein-DNA interactions for A. thaliana from the AtRegNet
database [7]. All protein-DNA interactions were formatted for DREM 3-column format.

Human ChIP-Seq dataset from ENCODE [2] was downloaded from the “Txn Factor
ChIP” track in UCSC Genome Browser at http://hgdownload-test.cse.ucsc.edu/

goldenPath/hg19/encodeDCC/wgEncodeRegTfbsClustered/ on Oct 7, 2011. The track
contains aggregated binding peaks that were computed using a uniform pipeline for 148
human transcription factors across diverse cell lines. We mapped the TF names to standard
human gene names using the “Target Link” column of the ENCODE control vocabulary ta-
ble at http://genome.ucsc.edu/cgi-bin/hgEncodeVocab?ra=encode/cv.ra&type=Antibody.
In addition, ChIP-Seq peaks of the same TF in different cell lines were merged. In
this way, 126 unique TFs were obtained, including some general TFs like POL2. For
each human gene, we looked at the upstream 10kb and downstream 10kb window flank-
ing the transcription start site. All TFs that have binding peaks within that window
were considered to regulate that gene. In this way, 954,378 static protein-DNA interac-
tions were obtained for human. Please consult the ENCODE data release policy (http:
//genome.ucsc.edu/ENCODE/terms.html) if these interactions are used.

Ranked human PWM-gene predictions were obtained from Ernst et al [3]. Each PWM
was mapped to the set of corresponding TFs using TRANSFAC [5] and JASPAR [9], and
each TF name was mapped to the Entrez Gene id of the gene that encodes it. Genes and
TFs that could not be mapped to an Entrez Gene id were removed. This translation yielded
348 unique Entrez Gene ids from the 512 original PWMs. A protein-DNA interaction was
written if any of the rows for the gene were in the top 100 predictions in any of the PWM
columns matching the TF. This threshold resulted in a total of 59,578 interactions. An
expanded set of 514,925 interactions was also generated by relaxing the threshold to the top
1000 predictions per PWM. In both cases interactions were formatted for DREM 3-column
format.

Predicted mouse protein-DNA binding interactions were derived from the set of human
predictions above that used the top 1000 threshold. Human Entrez Gene ids were translated
to orthologous mouse Entrez Gene ids using the Mouse Genome Database (MGD) [1]
to map identifiers and the HUGO Gene Nomenclature Committee (HGNC) database [8]
for any genes MGD could not map. HGNC associated some human ids with dozens of
orthologous mouse ids, thus any human id that mapped to more than 5 mouse ids was
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discarded. If a human gene mapped to 2-5 mouse genes, its TF associations were transferred
to all of the matching mouse genes. The translated predictions contain 468,319 protein-
DNA binding interactions and were formatted for DREM 3-column format.

3. Assessment of TF binding prediction at split nodes with DECOD

In order to test the capabilities of running DECOD on DREM splits, when no TF-gene
interaction data is available for a species, we conducted the following experiment. We ran
DREM using only the Asbestos human data from the paper. That gave a model that was
learnt without TF-gene interaction data. Using the main split at the 6 hour time point,
we first computed the list of high scoring TFs using the human TF-gene interaction data
set used in the paper as an annotation source (not for learning). That resulted in 36 TFs
(enrichment p-value ≤ 9E-03) that we grouped into 24 families in table 1. Further, we used
DECOD to predict binding motifs in the 871 promoter sequences from the genes in the up
regulated path, contrasting 620 promoter sequences in the down regulated paths. DECOD
was run with motif width 6-8 and 10 motifs were retrieved for each width. Then STAMP
[4] was used to match each motif to known TF matrices in TRANSFAC (version 11.3).
All hits with a STAMP E-value ≤ 1.5E-03 were discarded, the remaining hits are shown
in table 2. Out of the 24 identified TF families DECOD was able to predict 10 (42%) as
shown in table 1. We show all the DECOD identified motifs that resemble the real motifs
in Fig. 2
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Table 1. Analysis of identified transcription factors (TFs) at the 6 hour
time point split node. Column 1 contains in each row TF family members
identified by DREM using the human TF-gene interaction data for anno-
tation (not learning). TFs with alternative name are shown in brackets.
Column 2 shows for which of these TFs at least one family member was
identified using DECOD for motif finding and subsequent matching with
STAMP, see text.

TFs identified by DECOD
VDR

SP1,SP2,SP3
RUNX1,RUNX2 X
ZEB1 (AREB6) X

RFX1,RFX5,RFXAP
JUN

HNF4A X
SMAD1 - SMAD7

MYB X
SREBF1 X

ELK1 X
RXRA X

ZNF354C
GATA3 X

TP63 (p53) X
DBP

ZBTB7A
BACH2
GABPA X
STAT6 X
MZF1
RXRB
WT1
ZIC2

Table 2: Full list of significant STAMP matches for the DE-
COD motifs. DECOD was run with motif width 6-8 (column
1) and 10 motifs were retrieved for each width (column 2).
Then STAMP [4] was used to match each motif to known
TF matrices in TRANSFAC (version 11.3). All hits with an
E-value ≤ 1.5E-03 were discarded. The name of the matched
TF with its TRANSFAC ID is shown in column 3 and the
STAMP E-value in column 4.

Width Motif# Match Evalue
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Table 2: Full list of significant STAMP matches for the DE-
COD motifs. DECOD was run with motif width 6-8 (column
1) and 10 motifs were retrieved for each width (column 2).
Then STAMP [4] was used to match each motif to known
TF matrices in TRANSFAC (version 11.3). All hits with an
E-value ≤ 1.5E-03 were discarded. The name of the matched
TF with its TRANSFAC ID is shown in column 3 and the
STAMP E-value in column 4.

Width Motif# Match Evalue
6 Motif1 STE12 M00664 1.95E-06
6 Motif1 TCF-4 M00671 1.18E-05
6 Motif1 IRF M00972 1.71E-04
6 Motif1 ICSBP M00699 2.29E-04
6 Motif1 IRF M00772 5.24E-04
6 Motif2 AR M00447 5.07E-04
6 Motif2 TFE M01029 5.81E-04
6 Motif2 p53 M00272 6.97E-04
6 Motif2 MATalpha2 M00031 1.50E-03
6 Motif2 DMRT3 M01148 1.82E-03
6 Motif3 ERF2 M01057 1.60E-06
6 Motif3 ATF4 M00514 1.57E-03
6 Motif3 repressor M00014 1.62E-03
6 Motif3 CREB M00039 1.99E-03
6 Motif3 E12 M00693 2.09E-03
6 Motif4 PEND M01015 6.58E-06
6 Motif4 Rim101p M01030 3.62E-05
6 Motif4 STE11 M01005 1.09E-04
6 Motif4 Alx-4 M00619 1.60E-04
6 Motif4 ROX1 M00728 1.70E-04
6 Motif5 Ets M00971 1.42E-07
6 Motif5 PEA3 M00655 3.09E-07
6 Motif5 c-Ets-1 M00743 3.12E-07
6 Motif5 Elf-1 M00746 1.25E-06
6 Motif5 c-Ets-1 p54 M00032 1.97E-06
6 Motif6 OVO M01101 2.52E-08
6 Motif6 SPF1 M00702 1.46E-04
6 Motif6 ROX1 M00728 1.70E-04
6 Motif6 RAV1 M00343 1.82E-04
6 Motif6 HP1 M00725 3.46E-04
6 Motif7 MYB.Ph3 M00219 1.10E-07
6 Motif7 AFP1 M00616 1.90E-06
6 Motif7 Lhx3 M00510 3.03E-04
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Table 2: Full list of significant STAMP matches for the DE-
COD motifs. DECOD was run with motif width 6-8 (column
1) and 10 motifs were retrieved for each width (column 2).
Then STAMP [4] was used to match each motif to known
TF matrices in TRANSFAC (version 11.3). All hits with an
E-value ≤ 1.5E-03 were discarded. The name of the matched
TF with its TRANSFAC ID is shown in column 3 and the
STAMP E-value in column 4.

Width Motif# Match Evalue
6 Motif7 RORalpha2 M00157 5.33E-04
6 Motif7 BR-C M00093 7.34E-04
6 Motif8 RBP-Jkappa M01112 3.00E-08
6 Motif8 Ik-1 M00086 1.51E-07
6 Motif8 Su H M00234 1.94E-07
6 Motif8 Ik-3 M00088 2.83E-07
6 Motif8 Ik-2 M00087 9.77E-07
6 Motif9 PEND M01015 1.08E-05
6 Motif9 Nkx2-5 M01043 1.81E-05
6 Motif9 Tel-2 M00678 3.89E-05
6 Motif9 RXR M01152 9.83E-05
6 Motif9 PXR M01153 1.31E-04
6 Motif10 Pax-1 M00326 3.53E-07
6 Motif10 Opaque-2 M00010 1.43E-06
6 Motif10 NIT2 M00142 7.85E-06
6 Motif10 Evi-1 M00011 1.78E-05
6 Motif10 GATA-1 M00347 4.48E-05
7 Motif1 MEF-2 M00405 5.61E-07
7 Motif1 aMEF-2 M00403 5.15E-06
7 Motif1 TATA M00216 6.88E-06
7 Motif1 C-EBPgamma M00622 2.18E-05
7 Motif1 TCF-4 M00671 2.34E-05
7 Motif2 Nanog M01123 1.01E-06
7 Motif2 STAT3 M00225 2.60E-06
7 Motif2 IRF M00772 3.39E-06
7 Motif2 STAT1 M00224 5.50E-06
7 Motif2 STAT1 M00492 6.43E-06
7 Motif3 Nrf-2 M00108 1.77E-09
7 Motif3 GABP M00341 9.65E-09
7 Motif3 c-Ets-1 p54 M00032 9.37E-08
7 Motif3 c-Ets-1 M00743 4.63E-07
7 Motif3 E74A M00016 9.51E-07
7 Motif4 dl M00043 3.32E-06
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Table 2: Full list of significant STAMP matches for the DE-
COD motifs. DECOD was run with motif width 6-8 (column
1) and 10 motifs were retrieved for each width (column 2).
Then STAMP [4] was used to match each motif to known
TF matrices in TRANSFAC (version 11.3). All hits with an
E-value ≤ 1.5E-03 were discarded. The name of the matched
TF with its TRANSFAC ID is shown in column 3 and the
STAMP E-value in column 4.

Width Motif# Match Evalue
7 Motif4 STE12 M00664 6.24E-06
7 Motif4 POU1F1 M00744 2.88E-05
7 Motif4 FOXP3 M00992 4.29E-05
7 Motif4 GT-1 M00635 4.56E-05
7 Motif5 DMRT5 M01150 1.22E-07
7 Motif5 OVO M01101 1.56E-05
7 Motif5 SPF1 M00702 4.97E-05
7 Motif5 c-Ets-2 M00340 2.02E-04
7 Motif5 LXR M00766 4.95E-04
7 Motif6 Elf-1 M00110 2.21E-06
7 Motif6 TATA M00216 1.47E-05
7 Motif6 unc-86 M00689 4.91E-05
7 Motif6 E4BP4 M00045 6.02E-05
7 Motif6 SOX10 M01131 7.38E-05
7 Motif7 Nrf-1 M00652 3.77E-08
7 Motif7 GCM M00634 3.91E-04
7 Motif7 Tax-CREB M00115 3.92E-04
7 Motif7 GCM M00270 2.00E-03
7 Motif7 p53 M00034 2.29E-03
7 Motif8 XFD-1 M00267 4.49E-06
7 Motif8 Freac-3 M00291 1.25E-05
7 Motif8 Croc M00266 3.02E-05
7 Motif8 Lentiviral M00318 8.24E-05
7 Motif8 BR-C M00094 1.60E-04
7 Motif9 ERF2 M01057 4.36E-09
7 Motif9 repressor M00014 1.45E-07
7 Motif9 E2F-1 M00430 1.91E-06
7 Motif9 E2F M00918 3.41E-05
7 Motif9 E2F-1 M00939 4.21E-05
7 Motif10 dl M00043 4.52E-06
7 Motif10 DEAF1 M01001 1.77E-05
7 Motif10 AREB6 M00415 1.82E-05
7 Motif10 STE12 M00664 3.15E-05
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Table 2: Full list of significant STAMP matches for the DE-
COD motifs. DECOD was run with motif width 6-8 (column
1) and 10 motifs were retrieved for each width (column 2).
Then STAMP [4] was used to match each motif to known
TF matrices in TRANSFAC (version 11.3). All hits with an
E-value ≤ 1.5E-03 were discarded. The name of the matched
TF with its TRANSFAC ID is shown in column 3 and the
STAMP E-value in column 4.

Width Motif# Match Evalue
7 Motif10 PTF1-beta M00657 1.21E-04
8 Motif1 DMRT3 M01148 1.65E-05
8 Motif1 ICSBP M00699 5.57E-05
8 Motif1 Nanog M01123 1.10E-04
8 Motif1 HNF3beta M00131 1.11E-04
8 Motif1 IRF M00772 1.46E-04
8 Motif2 STATx M00223 3.18E-06
8 Motif2 Nrf-2 M00108 6.83E-06
8 Motif2 c-Ets-1 p54 M00032 2.19E-05
8 Motif2 E74A M00016 2.23E-05
8 Motif2 STAT1 M00224 3.26E-05
8 Motif3 STE11 M01005 1.09E-05
8 Motif3 Rim101p M01030 2.70E-05
8 Motif3 BR-C M00094 9.59E-05
8 Motif3 POU1F1 M00744 1.13E-04
8 Motif3 STE11 M00274 1.66E-04
8 Motif4 MEF-2 M00405 1.33E-05
8 Motif4 aMEF-2 M00403 4.35E-05
8 Motif4 C-EBPgamma M00622 3.74E-04
8 Motif4 FOXO3 M00477 3.95E-04
8 Motif4 BR-C M00094 4.18E-04
8 Motif5 Elk-1 M00007 5.82E-10
8 Motif5 Nrf-2 M00108 3.89E-09
8 Motif5 GABP M00341 3.85E-08
8 Motif5 c-Ets-1 p54 M00032 5.30E-08
8 Motif5 c-Ets-2 M00340 4.72E-07
8 Motif6 Gfi1b M01058 4.27E-05
8 Motif6 WRKY M00681 6.05E-04
8 Motif6 Pbx-1b M00124 7.45E-04
8 Motif6 COMP1 M00057 2.02E-03
8 Motif6 IRF-1 M00747 2.09E-03
8 Motif7 Ik-1 M00086 1.33E-06
8 Motif7 RBP-Jkappa M01112 1.26E-05
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Table 2: Full list of significant STAMP matches for the DE-
COD motifs. DECOD was run with motif width 6-8 (column
1) and 10 motifs were retrieved for each width (column 2).
Then STAMP [4] was used to match each motif to known
TF matrices in TRANSFAC (version 11.3). All hits with an
E-value ≤ 1.5E-03 were discarded. The name of the matched
TF with its TRANSFAC ID is shown in column 3 and the
STAMP E-value in column 4.

Width Motif# Match Evalue
8 Motif7 Lyf-1 M00141 2.76E-05
8 Motif7 C-EBPbeta M00117 6.27E-05
8 Motif7 Ik-3 M00088 1.21E-04
8 Motif8 HAC1 M00730 3.97E-05
8 Motif8 AR M00481 7.92E-04
8 Motif8 YY1 M00069 1.52E-03
8 Motif8 LBP-1 M00644 1.80E-03
8 Motif8 HEB M00698 3.72E-03
8 Motif9 ERF2 M01057 8.36E-08
8 Motif9 repressor M00014 2.79E-06
8 Motif9 HAC1 M00730 1.53E-04
8 Motif9 ACAAT M00309 2.53E-04
8 Motif9 E2F-1 M00430 3.11E-04
8 Motif10 Nrf-1 M00652 1.91E-06
8 Motif10 c-Ets-1 p54 M00032 4.40E-06
8 Motif10 GABP M00341 7.25E-06
8 Motif10 c-Ets-1 M00743 1.13E-05
8 Motif10 c-Ets-1 M01078 1.41E-04
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DECOD  
Run Width 

DECOD Recovered 
Motif 

Matched motif 
(Returned by STAMP) 

Matched TF 
(STAMP) 

Match E-value 
(STAMP) 

P-value of TF 
Enrichment (DREM) 

Elk-1 5.81e-10 8 

7 GABP 9.54e-9 

6 MYB.Ph3 1.10e-7 

8 STATx 3.17e-6 

6 Evi-1 1.78e-5 

7 AREB6 1.83e-5 

6 GATA-1 4.48e-5 

RXR 9.83e-5 6 

HNF3beta 1.11e-4 8 

6 p53 6.97e-4 

2.18e-3 (ELK1) 

7.22e-3 (GABPA) 

1.80e-3 (MYB) 

7.22e-3 (STAT6) 

8.74e-5 (RUNX1) 

1.99e-4 (ZEB1) 

3.17e-3 (GATA3) 

2.86e-3 (RXRA) 

6.31e-4 (HNF4A) 

4.10e-3 (TP63) 

Figure 2. Display of all DECOD predicted motifs (column 2), that are
similar to one of the 24 TF family members from table 1. Column 1 gives
the motif width DECOD was run with and column 3 the sequence logo of
the TRANSFAC matrix that matched. The TF name (column 4), STAMP
E-value (column5) and the enrichment p-value computed with DREM using
the TF-gene data as annotation only ( column 6) are shown.
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