Supporting Information

Rothe et al. 10.1073/pnas.1210443109

SI Materials and Methods

Growth Conditions, Strains, and Plasmids. Bacteria were routinely grown in LB containing antibiotics (50 or 100 μ g/mL ampicillin, 10 μ g/mL tetracycline, 20 μ g/mL chloramphenicol, 40 μ g/mL kanamycin) when necessary. For determination of β -galactosidase activities, *Escherichia coli* strains were grown in M9 minimal medium containing 1% (wt/vol) glycerol, proline (20 μ g/mL), thiamine (1 μ g/mL), casamino acids [0.66% (wt/vol)] and the appropriate antibiotics. Where indicated, 1 mM isopropyl- β -D-1-thiogalactopyranoside (IPTG) was added as inducer for *tacOP* and 7 mM D-salicin was added as substrate for BglF.

The strains and plasmids used are described in Table S1. Oligonucleotides are listed in Table S2. Plasmid pFDX4732 was constructed by ligating the AseI–HindIII fragment of plasmid pFDX3214 encompassing the *fruB* gene between the AseI/HindIII sites of plasmid pFDX3852. The series of plasmids pFDX4733–pFDX4739 was constructed by ligation of the XhoI–SalI fragment of plasmid pFDX4291 encompassing the pSC101 origin of replication and the *cat* gene to the SalI–SalI fragments encompassing the P_{tac} expression cassettes of the following plasmids, which resulted in the plasmids given in parentheses, respectively: pFDX3161 (pFDX4733), pFDX3851 (pFDX4735),

pFDX3852 (pFDX4736), pFDX3221 (pFDX4737), pFDX4732 (pFDX4738), and pFDX3214 (pFDX4739). For construction of plasmids pGP1286 and pGP1319 carrying strep-bglG and strep- s_{tag} -bglG under T7 promoter control, respectively, bglG was amplified from chromosomal DNA using primers FR108/ FR109 (for strep-bglG) and primers FR181/FR109 (for strep s_{tap} -bglG) and cloned between the SacI and BamHI sites of plasmid pGP172. Plasmids pGP1309 and pGP1320 carrying strep-bglG-H208A and strep-stag-bglG-H208A under T7 promoter control, respectively, were constructed in the same manner, but with the difference that plasmid pFDX4221 was used as template for PCR. Plasmid pGP438 carrying strep-ptsH (ptsH from Bacillus subtilis) under T7 promoter control was constructed by amplification of the ptsH gene from the B. subtilis chromosome using primers SHU54 and SB46 and subsequent cloning of the resulting PCR fragment between the SacI and BamHI sites of plasmid pGP172. For construction of plasmids pGP1287, pGP1288, and pGP1299 carrying His₁₀-ptsH, His₁₀fruB and His₁₀-ptsI under P_{tac} control, respectively, the respective genes were amplified by PCR using primers FR120/ FR121 (ptsH), FR122/FR123 (fruB), and FR128/FR129 (ptsI). Subsequently, the PCR fragments were used to substitute the NheI-XbaI fragment encompassing *ptsN* in plasmid pBGG190.

Fig. S1. PEP and EI-dependent phosphorylation of the Strep– S_{tag} –BgIG fusion protein by HPr in vitro. Phosphorylation assays were carried out using either [³²P]-PEP (*Upper*) or 1 μ M cold PEP (*Lower*). In these assays, purified His₁₀–EI, His₁₀–HPr, and Strep– S_{tag} –BgIG were present as indicated. In the last lane, Strep–BgIG was used as a control to demonstrate the increased molecular weight caused by the additional S_{tag} in Strep– S_{tag} –BgIG. After, the assay proteins were separated on 15% SDS-polyacrylamide gels and subsequently analyzed by phosphoimaging (*Upper*) or staining with Coomassie brilliant blue (*Lower*). Positions of the molecular weight marker are given at *Left*.

Fig. 52. FruB can substitute for HPr in aryl- β -glucoside transport. Strains R1752 (1, wild type) and R1977 (2–8; Δ [*ptsH, ptsl, crr*]::*neo*, Δ [*fruB, fruK, fruA*]) were transformed with low copy plasmids carrying *P_{tac}*-controlled genes coding for the PTS proteins as indicated. These plasmids were pFDX283 (sectors 1 and 2), pFDX3161 (sector 3), pFDX3851 (sector 4), pFDX3852 (sector 5), pFDX4732 (sector 6), pFDX3221 (sector 7), and pFDX3214 (sector 8). Strains also carried an artificial *P_{tac}*:*ibg/G-bg/F* operon integrated into the chromosomal *λattB* site, whereas the natural *bg/* operon was deleted. To allow for regulated expression of the genes under *P_{tac}* control, the strains additionally carried the compatible plasmid pFDX3158 as source for Lacl repressor. The various transformants were streaked on MacConkey indicator plates containing the aryl- β -glucoside arbutin and IPTG for induction of *P_{tac}*-controlled genes as indicated (–IPTG, *Left*; +IPTG, *Right*). A dark red color of the colonies indicates uptake and utilization of arbutin. It should be noted that these strains can transport the aryl- β -glucosidase salici, but are unable to catabolize this sugar due to the absence of the phospho- β -glucosidase BgIA, encoded elsewhere, which is constitutively expressed (1). BgIA is able to degrade phosphoarbutin, but not phosphosalicin (2). The data show that presence of EI and HPr (sector 4) or EI and FruB (sectors 6 and 7) allows transport and utilization of arbutin (*Right*).

1. Junne T, Schnetz K, Rak B (1990) Location of the bg/A gene on the physical map of Escherichia coli. J Bacteriol 172:6615-6616.

2. Prasad I, Young B, Schaefler S (1973) Genetic determination of the constitutive biosynthesis of phospho-ß-glucosidase A in Escherichia coli K-12. J Bacteriol 114:909–915.

Fig. S3. BgIG also becomes phosphorylated in vitro by HPr from *Bacillus subtilis*. It has previously been shown that BgIG also gains activity, when EI and HPr in *E. coli* are replaced by their homologs from *B. subtilis*. This activation of BgIG occurred in a strain lacking the *fruBKA* operon and required the His15 phosphorylation site in HPr, suggesting that HPr from *B. subtilis* is able to activate BgIG by phosphorylation like its *E. coli* homolog (1). To test whether phosphorylgroup transfer is indeed possible between these two proteins, we carried out PEP-dependent in vitro phosphorylation assays using purified recombinant His₆– EI and Strep–HPr, both from *B. subtilis* (EI_{Bs} and HPr_{Bs}). Proteins were tested in various combinations as indicated. Assays were carried out using either [³²P]-PEP (*Upper*) or 1 μ M cold PEP (*Lower*). Proteins were subsequently separated by denaturing gel electrophoresis using 15% SDS-polyacrylamide gels. Gels were analyzed by phosphoimaging (*Upper*) or staining with Coomassie brilliant blue (*Lower*). Positions of the molecular weight marker are given at *Left*. The data show that both El_{Bs} and HPr_{Bs} became phosphorylated when incubated together with [³²P]-PEP (lane 2). When Strep–BgIG was additionally present, it also became phosphorylated, but not when it was incubated with El_{Bs} or HPr_{Bs} alone (lanes 5–7). In conclusion, BgIG can also be phosphorylated by HPr from *B. subtilis*.

1. Reichenbach B, Breustedt DA, Stülke J, Rak B, Görke B (2007) Genetic dissection of specificity determinants in the interaction of HPr with enzymes II of the bacterial phosphoenolpyruvate:sugar phosphotransferase system in Escherichia coli. J Bacteriol 189:4603–4613.

SAND SAL

Name	Genotype	Reference
Strains		
FT1/pLysS	BL21(DE3) ∆[ptsH, ptsl, crr]::neo/pLysS, cat	(1)
R1279	CSH50 ∆(pho-bgl)201 ∆(lac-pro) ara thi	(2)
R1752	as R1279, but attB::tacOP-bglG-bglF (bla)	(3)
R1969	as R1279, but Δ [ptsH, ptsI, crr]::neo, Δ [fruB, fruK, fruA]	(4)
R1977	as R1279, but attB::tacOP-bglG-bglF (bla), Δ [ptsH, ptsI, crr]::neo, Δ [fruB, fruK, fruA]	(3)
R2013	as R1279, but attB::tacOP-bglG-bglF (bla), Δ [ptsH, ptsI, crr]::neo	(3)
Plasmids		
pAG3	His ₆ -ptsl (B. subtilis) under T5 promoter control in pQE30, bla, ori ColEl	(5)
pBGG190	His_{10} -ptsN under control of P_{tac} , bla, ori ColEl	(6)
pFDX283	P_{tac} , tet. ori p15A (empty vector)	
pFDX2942	P _{tac} -bglG, SD of gene10 of phage T7 in front of bglG, tet, ori p15A	(3)
pFDX3158	lacl ^q , P ₁₆ -bglt2- lacZ, cat, ori ColEl	(3)
pFDX3161	ptsl under control of P _{tag} tet, ori p15A	(3)
pFDX3214	fruB under control of P _{tac} , tet, ori p15A	(3)
pFDX3221	fruB and ptsl under control of P_{tac} , tet, ori p15A	(3)
pFDX3225	P _{tac} -galK'-bglG, SD of gene10 of phage T7 in front of galK'-bglG, tet, ori p15A	(3)
pFDX3851	ptsH and ptsI under control of P_{taci} tet, ori p15A	(4)
pFDX3852	ptsH-H15A and ptsI under control of P_{taci} tet, ori p15A	(4)
pFDX4221	bg/G-H208A and bg/F under control of P_{tac} , tet, ori p15A	(8)
pFDX4291	operator-less P _{tac} , sacB-SD, MCS, cat, ori pSC101	
pFDX4732	fruB, ptsH-H15A and ptsl under control of P_{tac} , tet, ori p15A	
pFDX4733	pts/ under control of P_{tar} cat, ori pSC101	
pFDX4735	ptsH and ptsI under control of P_{tac} cat, ori pSC101	
pFDX4736	ptsH-H15A and ptsl under control of P_{tack} cat, ori pSC101	
pFDX4737	fruB and ptsl under control of Ptac, cat, ori pSC101	
pFDX4738	fruB, ptsH-H15A and ptsl under control of P_{tack} cat, ori pSC101	
pFDX4739	fruB under control of P _{tac} cat, ori pSC101	This work
pFDY226	lacl ^q , P ₁₆ -bqlt2- lacZ, bla, ori ColEl	(2)
pGP172	T7-promoter-streptag-MCS, bla, ori ColEl	(10)
pGP438	strep-ptsH (B. subtilis) under T7 promoter control, bla, ori ColEl	S. Hübner
pGP1286	strep-bglG under T7 promoter control, bla, ori ColEl	This work
pGP1287	$His_{10}-ptsH$ (E. coli) under control of P_{tac} , bla, ori ColEl	This work
pGP1288	His_{10} -fruB under control of P_{tac} , bla, ori ColEl	This work
pGP1299	His ₁₀ -ptsl (E. coli) under control of P_{tac} , bla, ori ColEl	This work
pGP1309	as pGP1286, but bglG with a H208A exchange (CAT \rightarrow GCT)	This work
pGP1319	strep-s _{taa} -bg/G under T7 promoter control, bla, ori ColEl	This work
pGP1320	strep-s _{tag} -bg/G-H208A under T7 promoter control, bla, ori ColEl	This work

Ori, origin of replication; *SD*, Shine-Dalgarno sequence; MCS, multiple cloning site; *strep*, sequence encoding the Strep-tag epitope, which is a synthetic peptide that exhibits intrinsic affinity toward the streptavidin derivative Strep-Tactin and consists of the eight amino acids Trp-Ser-His-Pro-Gln-Phe-Glu-Lys; *stag*, sequence encoding the S-tag epitope, which corresponds to the first 15 residues of pancreatic RNase A and consists of the amino acids Lys-Glu-Thr-Ala-Ala-Ala-Ala-Lys-Phe-Glu-Arg-Gln-His-Met-Asp-Ser.

1. Parche S, Schmid R, Titgemeyer F (1999) The phosphotransferase system (PTS) of *Streptomyces coelicolor* identification and biochemical analysis of a histidine phosphocarrier protein HPr encoded by the gene *ptsH. Eur J Biochem* 265:308–317.

- 2. Schnetz K, et al. (1996) LicT, a Bacillus subtilis transcriptional antiterminator protein of the BglG family. J Bacteriol 178:1971–1979.
- 3. Görke B, Rak B (1999) Catabolite control of Escherichia coli regulatory protein BglG activity by antagonistically acting phosphorylations. EMBO J 18:3370–3379.
- 4. Reichenbach B, Breustedt DA, Stülke J, Rak B, Görke B (2007) Genetic dissection of specificity determinants in the interaction of HPr with enzymes II of the bacterial phosphoenolpyruvate:sugar phosphotransferase system in Escherichia coli. J Bacteriol 189:4603–4613.
- 5. Galinier A, et al. (1997) The Bacillus subtilis crh gene encodes a HPr-like protein involved in carbon catabolite repression. Proc Natl Acad Sci USA 94:8439-8444.
- 6. Lüttmann D, et al. (2009) Stimulation of the potassium sensor KdpD kinase activity by interaction with the phosphotransferase protein IIA(^{Ntr}) in *Escherichia coli*. *Mol Microbiol* 72: 978–994.
- 7. Görke B, Rak B (2001) Efficient transcriptional antitermination from the Escherichia coli cytoplasmic membrane. J Mol Biol 308:131-145.
- 8. Görke B (2003) Regulation of the *Escherichia coli* antiterminator protein BgIG by phosphorylation at multiple sites and evidence for transfer of phosphoryl groups between monomers. *J Biol Chem* 278:46219–46229.
- 9. Kalamorz F, Reichenbach B, März W, Rak B, Görke B (2007) Feedback control of glucosamine-6-phosphate synthase GImS expression depends on the small RNA GImZ and involves the novel protein YhbJ in *Escherichia coli*. Mol Microbiol 65:1518–1533.
- 10. Merzbacher M, Detsch C, Hillen W, Stülke J (2004) Mycoplasma pneumoniae HPr kinase/phosphorylase. Eur J Biochem 271:367–374.

Table S2. Oligonucleotides used in this study

PNAS PNAS

Primer	Sequence	Res. sites	Purpose
FR108	AAAGAGCTCGatgAACATGCAAATCACCAAAATTCTC	Sacl	bg/G forward
FR109	TTTGGATCCtcaGTGTTCTTTGCGCACG	BamHI	bglG reverse
FR120	AAAGCTAGCatgTTCCAGCAAGAAGTTACCATTAC	Nhel	<i>ptsH_{Ec}</i> forward
FR121	TTTTCTAGAttaCTCGAGTTCCGCCATCA	Xbal	<i>ptsH_{Ec}</i> reverse
FR122	AAAGCTAGCatgTTCCAGTTATCCGTACAGG	Nhel	fruB forward
FR123	TTTTCTAGAttaTGCGCCCTCCCCAAG	Xbal	fruB reverse
FR126	GCACAGCTGAACCTGAAG		<i>ptsl_{Ec}</i> sequencing
FR127	GCGCAGTTCCTGTTTGTAG		<i>ptsl_{Ec}</i> sequencing
FR128	AAA <u>GCTAGC</u> atgATTTCAGGCATTTTAGCATCCCCGGGTATC	Nhel	<i>ptsl_{Ec}</i> forward
FR129	TTTTCTAGAttaGCAGATTGTTTTTCTTCAATGAACTTGTTAACCAG	Xbal	<i>ptsl_{Ec}</i> reverse
FR181	AAAGAGCTCGAAAGAAACCGCGGCGAAATTTGAACGTCAGCATA	Sacl	<i>bglG-S_{tag}</i> forward
	TGGATAGCatgAACATGCAAATCACCAAAATTCTC		
SB46	AAA <u>GGATCC</u> ttaCTCGCCGAGTCCTTCGCTTTTCAT	BamHI	<i>ptsH</i> _{Bs} reverse
SHU54	AAAGAGCTCgatgGCACAAAAAACATTTAAAGTAACTGC	Sacl	<i>ptsH</i> _{Bs} forward

Restriction sites are underlined; start and stop codons are in small caps. Ec, E. coli; Bs, B. subtilis.