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1 Materials and methods

1.1 Structure-based model without energetic roughness

To quantify the impact of topology on the effective roughness, we used a Cα structure-
based model [1] to explore the density of states. For these calculations, the structure-
based Hamiltonian only included stabilizing interactions between residues that are in
contact in the native configuration. The Hamiltonian for a Cα structure based model
with configuration Γ is given by expression:

H(Γ,ΓN )SBM =
∑
bonds

Kr(r − r0)2 +
∑
angles

Kθ(θ − θ0)2

+
∑

dihedral

K
(n)
φ [1 + cos(n× (φ− φ0))]

+

native∑
i<j−3

ε(i, j)[5(
σij
rij

)12 − 6(
σij
rij

)10]

+

non−native∑
i<j−3

ε2(i, j)(
σNC
rij

)12

The total energy is divided into bond stretching, angle bending, torsional and non-
bonded interactions. The parameters Kr, Kθ, Kφ, ε, ε2 weight the relative strength
of each type of interaction. r, θ, and φ are the bond lengths, the angles, and the
dihedral angles, with a subscript zero representing the values adopted in the native
configuration, ΓN . Nonbonded interactions are included between all residue pairs
that are separated in sequence by at least three residues, and they are subdivided
into native interactions and nonnative interactions. For native contacts, σij is the
distance between the Cα positions of residues i and j in the native configuration.
For non-native contacts, σNC provides excluded volume repulsion with a value of 4
Å. The native contact map is built by Contacts of Structural Units (CSU) software
[2]. Topology files for Gromacs [3] were generated using the smog@ctbp webserver
(http://smog.ucsd.edu) [4]. Reduced units were used for all calculations. ε = 1.0,

Kr = 100.0, Kθ = 20.0, K
(1)
φ = 1.0, K

(3)
φ = 0.5 and ε2 = 1.0.

1.2 Obtaining the density of states

To calculate the density of states, we used Replica Exchanged Molecular Dynamics
(REMD) to ensure sufficient sampling in energy space [5]. We performed 48 parallel
temperatures ranging from 0.2 ∼ 2.2, where Tf was typically ≈ 1.0. Each replica was
simulated for 2×108 timesteps and exchanges were attempted every 100 steps. Figure
S1 shows the temperature evolution of 3 replicas for protein α3D in the simulations,
which demonstrates that the replicas sample the full range of temperatures, ensuring
sufficient sampling over the full range of phase space. The distributions of energy
at different temperatures significantly overlap with neighboring temperatures (Figure
S2A). Average acceptance ratios for swapping ranged from 20% to 50% for all proteins.
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Figure S1: The temperature evolution of replicas 1, 25, 48 for protein α3D. (A) The
whole temperature exchanged evolution. Each replica covers the whole temperature
range and walks randomly in temperature space. (B) Zoomed-in perspective of the
temperature exchange evolution.

Figure S2: The energy distribution of canonical ensemble and micro-canonical ensem-
ble for protein α3D. (A) The energy distribution from REMD simulations. Different
curves correspond to different temperatures. (B) The density of states represents the
energy distribution of the micro-canonical ensemble. Using WHAM, we transform
the canonical ensemble into the micro-canonical ensemble.

Each simulated replica samples a canonical ensemble. In order to probe the density
of states, we covert the distributions from the canonical ensemble n(E, T ) to obtain
the distribution of energies in the micro-canonical ensemble n(E):

n(E, T ) ∼ n(E)e−E/kBT

This way, we directly obtain the underlying density of states and therefore the intrinsic

4



effective energy landscape of protein folding. Trajectories at different temperatures
were collected and analyzed using the Weighted Histogram Analysis Method (WHAM)
[6]. For analysis, only the non-bonded and dihedral energies were used. The bond
energy terms only change and contribute at very high temperatures. However, bond
stretching is less relevant to folding, so it excluded from analysis here.

Since REMD leads to individual replicas making transitions between temperatures,
the constant temperature kinetics can not be directly extracted, although there have
been some efforts to do so elsewhere [7–11]. For our kinetic analysis, we simply
performed 200 trajectories from different initial unfolded configurations and random
velocities, for each temperature and protein. The mean first passage time (MFPT)
was then calculated.

1.3 Calculating Tf and Tg

1/Tg

1/Tf

En EGS ED

ln[n(E)]

E

SD

Figure S3: Schematic diagram of idealized log density of states in the random energy
model (REM) [12].
Figure S3 shows a schematic diagram of the log of the density of states in a random
energy model (REM) [12]. The density of states is divided into two distinct regions:
native state ensemble and non-native state ensemble. The slope connecting the native
ensemble En to the tangent of the density of state for the non-native ensemble ED
measures the folding temperature, according to the relation 1/Tf = SD/(ED − En).
At the folding temperature Tf , the lowest energy ensemble (En) and the unfolded en-
semble are equally probable. The slope of the curve at the ground-state energy (EGS)
of the non-native ensemble gives the reciprocal of the trapping transition temperature
(Tg), which is the temperature at which the entropy of the system goes to zero. The
foldability of proteins is ensured by the criterion Tf > Tg, which is clearly shown in
the figure.(Figure adapted from [13] with minor modifications.)

In atomistic models, the energy gap between native state energy En and ground
state energy of the non-native ensemble EGS is more difficult to evaluate since the
native state spreads from a single point to a continuous distribution. The ground
state energy of non-native states, relative to the native stability (En and EGS), has
been demonstrated to determine the foldability of proteins through the use of lattice
models. The large gap, which leads to more stable folding thermodynamics and faster
kinetics has been extensively explored through theoretical and simulation studies [14–
19]. However, when the distribution of non-native states is not considered in the
evaluation of the energy gap, it is insufficient to determinate the foldability [20–22].
Other lattice model simulations found a new criterion that a protein-like sequence
has a large ratio of energy gap between native states and non-native states divided
by the energy dispersion of non-native states [23–25]. In our work, we used a ratio
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between the energy gap δE, roughness ∆E and entropy S of system to describe
the folding thermodynamics and kinetics of each protein. These three quantities
characterize the topography of the protein folding energy landscape in terms of the
steepness, roughness and size of the funneled landscape and yield the dimensionless
ratio: Λ = δE

∆E
√

2S
[14, 15, 26–30]. δE denotes the energy gap between the native and

non-native ensembles, ∆E is the variance in energies of the non-native states and S
is the entropy of the non-native ensemble.

It is challenging, yet important, to define the location of the native and non-
native basins within the density of states. We use the deviation of each configuration
from the native structure to identify the non-native ensemble. The RMSD criterion
is proposed in our analysis instead of fraction of the native contacts Q, because Q
mainly monitors tertiary structure changes, while the secondary structure arrange-
ment is mostly related to the rotation of torsional angles. We first plot the 1D free
energy profile along Q at folding temperature; then, we find the location of minimal
free energy within the native ensemble; finally, we extract the mean RMSD value:
RMSDC . For one-state downhill folders, we set RMSDC = 0.15. When the struc-
ture has RMSD > RMSDC , it is referred to as a non-native configuration. Then, we
can divide the density of states into the native ensemble and non-native ensemble. The
non-native ensemble can provide information on the trapping transition temperature
Tg and entropy S, and therefore the topological landscape roughness ∆ETop =

√
2STg

(Figure S4 and Figure S5). The energy gap δE is calculated from the difference be-
tween native ensemble energy and the average energy of the non-native configurations.
Accordingly, we then obtain Λ = δE

∆ETop
√

2S
.
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Figure S4: Logarithm of the density of states of the non-native ensemble, the energy
landscape funnel in one dimension (1d-funnel), as a function of energy for the (A) 13
proteins with different sizes and (B) 9 proteins with same size. The ground states
of the non-native ensembles, as well as the inverse slope of the log density of states
(trapping transition temperature Tg), are identified for each protein.
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Figure S5: Logarithm of the density of states of the native and non-native ensembles.
The energy landscape funnel in one dimension (1d-funnel), as a function of energy for
(A) 13 proteins with different sizes and (B) 9 proteins with same size.

1.4 Structure-based model with energetic frustration included

Energetic roughness is incorporated into the model by adding non-native attractive
interactions with heterogeneous strengths into the structure-based model. The Hamil-
tonian of a configuration Γ is then given by

H(Γ,ΓN ) = H(Γ,ΓN )SBM +
∑

non−native(i,j)

VNN (rij , ηb)

where VNN (rij , ηb) is of the form [31, 32]:

VNN (rij , ηb) =

{ ηij [1− 1
2 (
rij
rN

)20] if rij < rN

ηij
2 ( rNrij )20 if rij ≥ rN

where the strength ηij for non-native pair (i,j) is randomly assigned from a Gaussian
distribution with mean εNN and variance b2. When εNN = 0 and b2 = 0, the model
simplifies to a purely structure-based model. In our simulations, the parameter rN =
4
3σNC , σNC represents the excluded volume repulsion used in the standard structure
based model. The mean of non-native interactions εNN was set to 0, and we scaled
the variance b2 to change the magnitude of the stabilizing non-native interactions.

In an analytical model of protein folding, Bryngelson et al. proposed that energetic
roughness will lead to a glass trapping temperature (Tg), at which the protein becomes
frozen in a low energy configuration, the entropy vanishes and the kinetics become
very slow . The trapping transition temperature (Tg) induced by energetic roughness
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was determined as: Tg =
√

∆E2
Ene/2S, where ∆EEne is the energetic fluctuations in

non-native states and S is the entropy of non-native states. The energetic roughness
introduced by the non-native interactions is expressed as

√
Amaxb2, where Amax is

the maximum number of non-native contacts the protein can form.
The landscape roughness of proteins ∆ETotal is contributed both by topological

and energetic roughness. With the assumption that altering energetic roughness does
not change topological roughness, we can calculate ∆E2

Total = ∆E2
Top + ∆E2

Ene. The

trapping transition temperature (Tg) will be: Tg =
√

∆E2
Total/2S. So the folding

landscape measure Λ = δE/(∆ETotal
√

2S). The energy gap δE, entropy S can be
calculated directly from density of states.

1.5 Folding descriptors

To measure the foldability of each protein, Thirumalai and coworkers proposed an
intrinsic thermodynamic parameter σ = (Tθ−Tf )/Tθ, where Tθ is the polymer collapse
temperature and Tf is the folding temperature [20, 22, 33–35]. Tθ, considered to be
the temperature at which the protein collapses from a random coil to a compact
structure [36], is measured from the peak of temperature-dependent specific heat
curve. To quantify Tf , Thirumalai et al. introduced an “overlap” function, which
measures the similarity of each configuration to the native state.

χ = 1− 1

N2 − 3N + 2
<

∑
i 6=j,j±1

δ(rij − r0
ij) >

where the superscript 0 refers to the native state and N is the residue number. Thus
the folding temperature Tf corresponds to the peak of temperature-dependent fluc-
tuation ∆χ. In structure based model, the collapsed and folding process are often
close to each other, such that σ ≈ 0 [37]. Therefore in this work, σ is not used for the
topological roughness analysis.

For the analysis of the kinetics of folding, it is necessary to perform simulations
under consistent conditions for each proteins. Kinetic simulations were performed at
the temperature which χ = 0.2 (Tχ) for each protein. Tf is the folding temperature,
where the probability of the protein being folded, or unfolded, is equal. Tχ can be
interpreted as at which the folding population equals 80%, which mimics folding under
physiological conditions.

1.6 Graphing Folding Funnels

Figure S6: The realistic folding funnels for villin headpiece(left), CI2(middle),
P13(right).
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Figure S6 shows the three folding energy landscapes, calculated directly from sim-
ulations. The funnels are graphed in the following way. The vertical axis corresponds
to energy. For each energy, the average Q, < Q(E) > is calculated. The semi-major
axis of the ellipsoidal cross section is set to

√
Sr(1−Q). The other semi-axis of the

cross section is then set, such that the area of the cross section is equal to the entropy
S(E). Then we shift S(Q), S(Q)=0. That is, the native configuration is depicted as
having an entropy of zero.
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Figure S7: The relationship used to plot the realistic funnels. (A) The relationship
between 1− < Q(E) > and energy. (B) The relationship between 1-Q and S(Q). The
red line is the polynomial fit of the grid data. Energy and entropy has been scaled by
protein size N. The relation shown here is similar for the other 12 proteins.

The roughness in each funnel is different for each protein (Figure S6). To depict the
relationship between the bumpiness on the funnel and the roughness of the energy
landscape, S(Q) was plotted against 1-Q and then fitted to a polynomial function
(Figure S7B). Then mean square error (MSE) between the S(Q) (i.e. the rugged
funnel) and the smooth fit measures the “bumpiness” of the funnel, which we will
show to be related to the roughness for specific cases (Figure S7)
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Figure S8: The relationship between the MSE and the roughness of the energy land-
scape. The abbreviations of proteins are labeled beside the data.

The bumpiness of the funnels monotonically correlates with the roughness of the
energy landscapes for proteins of different sizes (Figure S8). As expected, as the
roughness increases, the funnels becomes more rugged. However, we did not find a
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correlation between the bumpiness of the funnels and the roughness of the landscapes,
when comparing proteins of the same size. Since the bumpiness of the funnels and
the roughness both correlated with protein size, their correlation is due to the size
dependence. In other words, the bumpiness of the funnels can be a representation of
landscape roughness for proteins with different sizes while it may not be applicable
for proteins with same size.
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2 Results

The Temperature Dependence of Protein Folding Rates.

The kinetics of protein folding is highly dependent on the environment, especially
temperature in simulations. In Figure S14 and Figure S20, we see the kinetics of
folding of different proteins with respect to temperatures with the different sizes and
with same size but different structural topologies. For the proteins studied here, there
is a U-shape dependence of the mean first passage time (MFPT) τ , when plotted as
a function of a) absolute simulation temperature T , or b) temperatures normalized
by T = T0. T0 is the optimal temperature for folding (i.e., the temperature where the
protein folding time τ is minimal.). The U shape dependence of folding kinetic rate
versus temperature can be understood in terms of thermodynamic considerations. At
higher temperatures, the non-native states are preferred over the folded states, making
more difficult to reach folded configurations. In contrast, when the temperature is
lower, the native state are preferred, however the traps associated with folding become
prominent, which slows down the kinetics. Therefore, there is an optimal temperature
for each protein where the kinetic rate is minimal, which has also been observed
experimentally [21, 27, 41, 42, 45–47, 49, 51–68].

Each protein has specific thermodynamic stability and therefore a unique folding
temperature Tf . The kinetic rates measured in experiments are often at different
temperatures near or below their folding temperatures. For the analysis of the ki-
netics of folding, it is necessary to perform simulations under consistent conditions
for each protein. A key question is: What is the appropriate reference temperature
for comparing the kinetic behavior of proteins? We obviate the need for an absolute
temperature scale for comparison, here, we choose the Tχ, which is the temperature
at which the native ensemble of each protein accounts for 80% of the population for
measuring the kinetic rate for each protein [22]. This is a reasonable choice of the
temperatures for comparison of the intrinsic folding kinetics of different proteins. In
addition, Tχ being lower than Tf can be interpreted as mimicking folding under phys-
iological conditions, our results thereby have a strong connection to the experimental
measurements.

2.1 Topological roughness

The following figures and tables provide the details of all calculated quantities and
detailed descriptions of each protein studied.
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2.1.1 Thermodynamics and kinetics with different sizes: size effect

A B C D

E F G

H JI

L MK

Figure S9: The native structure of 13 proteins with different sizes used in this study for
the folding simulations are shown in cartoon representation with its Protein Data Base
code (PDB) (A) tryptophan cage (1L2Y) (B) beta3s B3S (no PDB code) (C) villin
headpiece subdomain (1YRF) (D) ww domain FBP28 (1E0L) (E) albumin binding
domain (1PRB) (F) protein A (1BDD) (G) src homology 3 domain SH3 (1FMK)
(H) chymotrypsin inhibitor 2 CI2 (1YPA) (I) cold shock protein CspTm (1G6P) (J)
α3D (2A3D) (K) twitchin 18th igsf module TWI (1WIT) (L) acylphosphatase ACP
(2VH7) (M) oncoprotein P13MTCP1 P13 (1QTU). The structures are created using
the package Visual Molecular Dynamics (VMD) [38] and are colored by an index along
the chain from red (N-terminus) to blue (C-terminus).
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Table S1: Quantities extracted from the density of states for the 13 proteins with
different sizes.

Protein Trp-cage Beta3s VillinFBP28AlbuminProtein A SH3 CI2 CspTm α3D TWI ACP P13

PDB 1L2Y (no PDB) 1YRF 1E0L 1PRB 1BDD 1FMK 1YPA 1G6P 2A3D 1WIT 2VH7 1QTU

N 20 20 35 37 53 60 61 64 66 73 93 94 115

Q 23 24 56 70 94 98 148 142 166 136 217 248 278

RCO 0.39 0.36 0.23 0.38 0.28 0.25 0.38 0.35 0.33 0.27 0.38 0.39 0.28

ACO 7.87 7.21 8.07 14.07 14.96 14.95 23.01 22.25 21.85 19.60 35.02 36.94 32.31

RMSD Criterion 0.15 0.15 0.15 0.15 0.26 0.43 0.18 0.15 0.14 0.25 0.17 0.16 0.37

En -22.54 -23.51 -54.38 -68.41 -90.96 -94.42 -144.07-137.89 -159.88 -130.95-206.61-239.82-266.76

EGS -19.98 -21.41 -49.98 -62.01 -84.64 -82.94 -124.09-113.86 -139.33 -105.20-174.18-194.46-207.55

δE 48.47 49.86 104.31 118.56 164.09 180.51 229.64 228.17 254.22 231.09 338.56 370.72 425.03

∆E 1.76 1.64 2.83 4.64 4.51 5.81 8.74 10.14 9.28 9.85 12.76 14.41 16.53

S0
(a) 58.51 64.12 103.91 116.45 162.82 160.33 192.27 166.82 211.95 178.73 286.43 267.59 303.89

δE√
2S0

4.48 4.40 7.24 7.77 9.09 10.08 11.71 12.49 12.35 12.22 14.15 16.02 17.24

δE
∆E

27.53 30.31 36.83 25.56 36.37 31.08 26.28 22.51 27.40 23.45 26.54 25.73 25.71

Tf
(b) 0.82 0.79 0.89 0.98 0.97 0.95 1.11 1.03 1.08 0.93 1.02 1.14 1.09

Tg 0.16 0.15 0.20 0.30 0.25 0.32 0.45 0.55 0.45 0.52 0.53 0.62 0.67

Tf
Tg

5.03 5.46 4.54 3.23 3.89 2.94 2.49 1.85 2.39 1.79 1.92 1.83 1.63

Λ 2.54 2.67 2.55 1.67 2.01 1.73 1.34 1.23 1.33 1.24 1.10 1.11 1.04

T0
(c) 0.59 0.57 0.63 0.67 0.80 0.76 0.88 0.89 0.78 0.83 0.81 0.80 0.80

T0
Tg

3.59 3.91 3.22 2.19 3.18 2.35 1.97 1.61 1.73 1.59 1.52 1.27 1.18

Tχ
(d) 0.75 0.74 0.78 0.93 0.92 0.84 1.09 1.02 1.07 0.89 1.01 1.13 1.07

Tχ
Tg

4.63 5.07 3.96 3.07 3.70 2.60 2.45 1.83 2.37 1.72 1.90 1.82 1.59

(a) S =
∑
E

ln(n(E,Q)), n(E,Q) is the density of states. S0 is the configurational entropy at QMin.

(b) Tf is calculated from the peak of heat capacity curve since the collapsed temperature (Tθ) is same
with folding temperature in structure based model [20, 22, 34, 35, 37].

(c) T0 is the optimum temperature at which the folding of proteins will be the fastest.
(d) Tχ is the temperature where χ = 0.2 and population of native folding is 80%.
(#) Temperature is in the unit of energy scale by multiplying Boltzmann constant k. Length and energy

scale are in the reduced units of Gromacs [3, 4].
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Figure S10: Topology of the native structure varied with different protein sizes. Fits
of (A) absolute contact order (ACO), (B) relative contact order (RCO) as a function
of protein size N for the 13 proteins. (A) The straight line represents y=-0.06+0.33x
with correlation coefficient 0.92. (B) The straight line represents y=0.33-1.8×10−4x
with correlation coefficient -0.09.
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The energy gap δE and entropy S are strongly correlated with protein size N
and energetic roughness ∆E scales with the square of protein size N1/2 (Figure S11),
which is expected from analytic theories [28, 30]. We also find that the dimensionless
ratio Λ, which measures of the underlying landscape topography, is also dependent
on protein size. In mean field theory, Λ should not explicitly depend on the size of
the protein. The size dependence may be due to the surface effects of finite sized
proteins, which is not accounted for in mean field theories that assume the infinite
size [39].
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Figure S12: Correlation between the slope of energy landscape and the energy gap.
Fits the average slope of energy landscape as a function of energy gap δE the 13
proteins with different sizes with correlation coefficient -1.00

Analytical energy landscape theoretical investigations of protein folding have pre-
viously shown that the energy gap is strongly correlated with the slope of energy
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versus Q [40]. In Figure S12, we show the correlation between the average slope and
the energy gap is strong in our simulations.
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Figure S13: The typical temperature varied with different protein sizes. Fits of (A)
folding temperature Tf , (B) glass trapping transition temperature Tf , (C) Tχ of 80%
native population and (D) optimum kinetic temperature T0 as a function of protein
size N for the 13 different proteins. (A) The straight line represents y=0.81+0.003x
with correlation coefficient 0.80. (B) The straight line represents y=0.05+0.006x
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with correlation coefficient 0.79. (D) The straight line represents y=0.59+0.003x
with correlation coefficient 0.72.
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Figure S14: Folding time τ as a function of (A) absolute simulation temperature T
and (B) normalized temperature T/T0 for the 13 proteins with different sizes. The
time is in the unit of MD step.

In Figure S14, we see a “U-shape” behavior of the folding time versus tempera-
ture. Long folding time at high temperature is due to the unstable nature of folded
configurations at high T. Long time folding at low temperature is due to the rough-
ness of the landscape. This behavior has been widely observed in the kinetic folding
experiments and simulations of different proteins [30, 41–49].

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 4  5  6  7  8  9  10  11

ln
(τ

f)

N1/2

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 6  8  10  12  14  16  18  20  22  24

ln
(τ

f)

N2/3

 0.9

 0.902

 0.904

 0.906

 0.908

 0.91

 0.912

 0.914

 0.916

 0.918

 0.92

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

C
or

re
la

tio
n 

co
ef

fic
ie

nt

β

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

 13

 13.5

 14

 14.5

 15

 2.8  3  3.2  3.4  3.6  3.8  4  4.2  4.4  4.6  4.8

ln
(τ

0)

ln(N)

A B

C D

Figure S15: Folding time as a function of protein sizes. (A) Fits lnτf as a function
of N1/2 with the straight line y=5.15+1.21x and the correlation coefficient is 0.92.
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(B) Fits lnτf as a function of N2/3 with the straight line y=7.24+0.47x and the
correlation coefficient is 0.92. (C) Fits of lnτf ∼ Nβ with straight line and plot the
correlation coefficient as a function of β. Because of the limit range of protein size N,
it is difficult to determinate a single superscript β but a range of reasonable values.
(D) Fits lnτ0 as a function of lnN representing a relationship: lnτ0 ∼ N2.48 with
correlation coefficient is 0.94. τf and τ0 are the folding time at folding temperature
Tf and optimum temperature T0.

The folding rate is correlated with protein size. Our results in Figure S15 are
consistent with the previous theories and simulations [34, 39, 50, 51, 69–77].

1 . 0 1 . 5 2 . 0 2 . 5 3 . 0

1 2

1 5

1 8

 

 

     y = 2 0 . 4 3 - 3 . 6 9 x
C o r r e l a t i o n  c o e f f i c i e n t  R = - 0 . 8 7

ln(
τ f)

Λ

P 1 3

T W I A C P

C I 2

α3 D

C s p T m
S H 3

F B P 2 8
p r o t e i n  A

a l b u m i n

t r p - c a g e

v i l l i n

b e t a 3 s

Figure S16: Folding time at folding temperature as a function of Λ. The correlation
is strong with correlation coefficient -0.87

Figure S16 shows that folding time at the folding temperature is strongly corre-
lated with Λ. It is to be expected since both ln(τf ) and Λ are dependent on protein
size N.
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2.1.2 Thermodynamics and kinetics with same size: topology effect

Figure S17: The native structure of 9 proteins with same size used in this study for
the folding simulations are shown in cartoon representation with its Protein Data
Base code (PDB). (A) ARR10-B (1IRZ) (B) splicing factor SF3a120 (2DT6) (C)
homeobox protein PBX1 (1DU6) (D) N-terminal domain of AhrC (2P5K) (E) ferre-
doxin I (1DFD) (F) chymotrypsin inhibitor 2 CI2 (1YPA) (G) tyrosine-protein kinase
ITK/TSK (2RN8) (H) bucandin (1IJC) (I) bubble protein (1UOY). The 9 proteins
can be classified into 3 categories by structure topology. (A-C) correspond to all α
topology, (D-F) correspond to α/β topology, (G-H) correspond to all β topology. The
structures are created using the package Visual Molecular Dynamics (VMD) [38] and
are colored by an index along the chain from red (N-terminus) to blue (C-terminus).
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Table S2: Quantities extracted from the density of states for the 9 proteins
with the same size but different structural topologies.

Protein ARR10-B SF3a120 PBX1 AhrC ferredoxin I CI2 ITK/TSK bucandin bubble

PDB 1IRZ 2DT6 1DU6 2P5K 1DFD 1YPA 2RN8 1IJC 1UOY

N 64 64 64 63 64 64 64 63 64

Q 95 110 116 122 123 142 134 144 157

RCO 0.22 0.30 0.26 0.31 0.38 0.35 0.35 0.35 0.28

ACO 13.80 18.93 16.78 19.75 24.63 22.25 22.66 22.00 18.09

RMSD Criterion 0.49 0.21 0.44 0.20 0.20 0.15 0.29 0.16 0.26

En -90.88 -105.77 -112.18 -117.60 -117.86 -137.89 -129.45 -139.89 -151.85

EGS -79.92 -86.99 -101.89 -98.25 -98.67 -113.86 -110.90 -123.44 -116.92

δE 180.66 203.34 207.23 210.81 211.80 228.17 218.16 226.59 240.83

∆E 5.54 7.29 5.64 8.40 7.76 10.14 7.85 8.58 10.84

S0
(a) 174.66 168.05 183.38 162.45 181.67 166.82 193.83 199.70 182.66

δE√
2S0

9.67 11.09 10.82 11.70 11.11 12.49 11.08 11.34 12.60

δE
∆E

32.60 27.89 36.73 25.08 27.28 22.51 27.81 26.40 22.23

Tf
(b) 0.92 0.92 1.04 0.99 0.97 1.03 1.04 1.05 1.06

Tg 0.30 0.40 0.29 0.47 0.41 0.55 0.40 0.43 0.57

Tf
Tg

3.12 2.31 3.54 2.13 2.39 1.86 2.61 2.46 1.88

Λ 1.74 1.52 1.91 1.39 1.43 1.23 1.41 1.32 1.16

T0
(c) 0.70 0.60 0.89 0.80 0.80 0.89 0.85 0.96 0.72

T0
Tg

2.36 1.50 3.03 1.71 1.96 1.61 2.13 2.24 1.26

Tχ
(d) 0.70 0.89 0.89 0.96 0.95 1.02 1.00 1.03 1.04

Tχ
Tg

2.36 2.24 3.02 2.06 2.33 1.83 2.51 2.40 1.83

(a) S =
∑
E

ln(n(E,Q)), n(E,Q) is the density of states. S0 is the configurational entropy at

QMin.
(b) Tf is calculated from the peak of heat capacity curve as the collapsed temperature (Tθ)

is same with folding temperature in structure based model [20, 22, 34, 35, 37].
(c) T0 is the optimum temperature at which the folding of proteins will be the fastest.
(d) Tχ is the temperature where χ = 0.2 and native folding population is 80%.
(#) Temperature is in the unit of energy scale by multiplying Boltzmann constant k. Length

and energy scale are in the reduced units of Gromacs [3, 4].
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Fits the average slope of energy landscape as a function of energy gap δE for 9 proteins
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of same size with correlation coefficient -0.86
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Figure S19: The typical temperatures varied with different topology. Fits of temper-
ature as a function of relative contact order (RCO) for the 9 different proteins with
same size. (A) Folding temperature Tf . The straight line is y=0.91+0.31x and the
correlation coefficient is 0.29. (B) Glass trapping transition temperature Tg. The
straight line is y=0.18+0.80x and the correlation coefficient is 0.42. (C) Tχ. The
straight line is y=0.48+1.47x and the correlation coefficient is 0.71. (D) Optimum
temperature T0. The straight line is y=0.50+0.98x and the correlation coefficient is
0.44.
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Figure S20: Folding time τ as a function of (A) absolute simulation temperature T
and (B) normalized temperature T/T0 for the 9 proteins with same size. The time is
in the unit of MD step.

The folding times of different sequences of the same size with respect to temper-
atures are shown in Figure S20. The similar U shape dependence is observed as in
Figure S14.
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Figure S21: Folding time lnτχ at temperature Tχ as a function of (A) Λ and (B)
relative contact order (RCO). (A) Fits lnτχ as a function of Λ with straight line and
the correlation coefficient is -0.89. (B) Fits lnτχ as a function of RCO with straight
line and the correlation coefficient is 0.76.

Figure S21 shows that Λ has a stronger correlation with the folding times than
RCO does. Contact order has been considered as an important factor in determining
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folding kinetics [40, 50, 78–81]. Compared with RCO, the energy landscape topog-
raphy measure Λ, which includes both energetic and topological factors rather than
entropy alone, is a more accurate predictor of the folding kinetics.
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Figure S22: Folding time at folding temperature correlates with Λ and RCO. (A) Fit
of ln(τf ) as a function of Λ with correlation coefficient -0.85. (B) Fit of ln(τf ) as a
function of RCO with correlation coefficient 0.70.

Figure S22 shows that folding time at folding temperature is strongly correlated
with Λ and RCO. Since Λ has a stronger correlation with the folding time than RCO
does, it is an accurate predictor of the folding time at folding temperature.
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Figure S23: The relationship between contact order and Λ obtained from the topo-
logical roughness without energetic roughness. (A) Λ versus the absolute contact
order (ACO) for 13 proteins with different sizes. (B) Λ versus the relative contact
order (RCO) for 9 proteins with the same size but different structural topologies. The
names of proteins are shown.

In order to see the relationship between the topology of the structure and Λ,
we show absolute contact order (ACO) for proteins with different sizes and relative
contact order (RCO) for proteins with the same size in Figure S23. The correla-
tion between contact order and Λ implies that Λ contains the structural topological
information of proteins. Λ includes not only entropic factor but also energetic con-
tributions, such as the energy gap and roughness. It can also quantitatively describe
the folding thermodynamics and kinetics when the protein folding is not fast and is
not determined by topology alone.
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Figure S24: Correlation between contact order and Λ for total proteins with 13 differ-
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with correlation coefficient -0.84. (B) Fits Λ as a function of relative contact order
(RCO) with correlation coefficient -0.16.

Figure S24 indicates that Λ has a strong correlation with ACO, which is correlated
with protein size. The relationship between Λ and RCO is poor, and RCO shows little
correlation with protein size.

2.1.3 Folding energy landscape
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Figure S25: Folding energy landscape in zero dimension. The distribution of the
energy levels (spectrum) for (A) 13 proteins with different sizes and (B) 9 proteins with
the same size. The lowest (native) energy En set to 0 for visualization purposes. The
stability gap δE is indicated by vertical arrows. Each energy level of the distribution
represents the sum of a cluster of states, except for the native band. The inset is
a magnification of the energy levels of CI2. The energetic roughness ∆E is also
indicated by vertical arrows.
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Figure S26: Folding energy landscape in one dimension. Logarithm of the density of
states as a function of energy for (A) 13 proteins with different sizes and (B) 9 proteins
with same size. The lowest (native) energy En set to 0 for visualization purposes.

Figure S27: Folding energy landscape in one dimension. Logarithm of the density of
states as a function of the fraction of native contacts Q for (A) 13 proteins of different
sizes and (B) 9 proteins of same size. Average energy as a function of Q for (C)
different-sized 13 proteins and (D) 9 proteins with same size.

24



2.1.4 Free energy profile

A B C

D E F

G H

Figure S28: The free energy in one dimension as a function of fraction of native
contacts Q and in two dimension as a function of Q and energy. Free energy profile
at kinetic temperature Tχ normalized by the corresponding kTχ as a function of Q
for (A) one-state downhill folding proteins, (B) 2-state folding proteins with different
sizes and (C) proteins with same size. Free energy profile at the optimum temperature
T0 when the folding kinetics is the fastest normalized by the corresponding kT0 as a
function of Q for (D) one-state downhill folding proteins, (E) 2-state folding proteins
with different sizes and (F) proteins with same size. Two dimensional free energy
profile for CI2 as a function of Q and energy at (G) Tχ, (H) T0 normalized by the
corresponding kT . The white region is not probed by the protein.
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2.2 Energetic roughness

The following figures and tables provide the details of all calculated quantities and
detailed descriptions of each protein studied.

2.2.1 Protein: Villin headpiece subdomain (1YRF)
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Figure S29: Thermodynamic results from REMD simulations. (A) Heat capacity
as a function of temperature for different b. The peak of the curve corresponds to
folding temperature Tθ. (B) The standard deviation of χ as a function of temperature
for different b. The peak of the curve corresponds to folding temperature Tf . (C)
Collapsed temperature Tθ, folding temperature Tf and thermodynamic parameter
σ = (Tθ − Tf )/Tf as a function of b. (D) χ as a function of temperature for different
b. The temperatures Tχ at which χ = 0.2 are picked to perform the kinetic simulation.
(E) Free energy profile along Q at the corresponding folding temperature for different
b normalized by the corresponding kTf .
In Figure S29, we can clearly see the effect of the energetic roughness in the thermo-
dynamics of protein folding. Figure S29A shows that the peak of the heat capacity
decrease with increasing b, suggesting that the folding cooperativity is reduced. In
Figure S29B, S29C, the folding temperature decreases as b increases and σ increases
slightly as b increases, demonstrating that the energetic roughness can decrease the
foldability of the proteins. In Figure S29D, Tχ decreases as b increases.
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Figure S30: One dimensional density of states. (A) Log density of states as a func-
tion of energy for different b. (B) Log density of states as a function of fraction of
native contacts Q for different b. The lowest energy En is relocated to 0 for a better
visualization.

Table S3: Quantities extracted from the density of states for villin with different
b.

b 0.2 0.4 0.6 0.8 1.0 1.2 1.4

EN -54.44 -54.64 -54.46 -54.49 -54.45 -54.41 -57.50

Amax
(a) 37 37 38 33 35 38 39

QNN
(b) 0.34 0.25 0.21 0.30 0.32 0.16 0.38

δE(QNN ) (c) 101.97 100.34 97.56 97.66 110.45 100.75 96.20

∆E(QNN )Ene
(d) 1.22 2.43 3.70 4.60 5.92 7.40 8.74

∆E(QNN ) (d) 3.08 3.73 4.66 5.40 6.56 7.92 9.19

S(QNN ) (e) 119.76 124.30 122.66 120.67 122.03 122.97 135.55

δE√
2S

6.74 6.52 6.36 6.41 7.13 6.53 5.98

δE
∆E

31.58 25.70 20.02 17.13 16.43 12.17 10.47

Tf 0.87 0.87 0.86 0.86 0.85 0.85 0.72

Tg
(f) 0.21 0.25 0.32 0.37 0.43 0.54 0.57

Tf
Tg

4.14 3.48 2.69 2.32 1.98 1.57 1.26

Λ 2.19 1.75 1.37 1.19 1.09 0.82 0.65

T0 0.58 0.65 0.58 0.62 0.67 0.70 0.73

T0
Tg

7.25 4.33 2.42 2.07 1.76 1.49 1.38

Tχ 0.78 0.78 0.77 0.77 0.76 0.76 0.66

Tχ
Tg

9.75 5.20 3.21 2.57 2.00 1.62 1.25

Tθ 0.89 0.89 0.88 0.88 0.88 0.88 0.89

σ 0.02 0.02 0.02 0.02 0.03 0.03 0.19

(a) Amax is the maximum number of non-native contacts the protein can form in non-native
states.

(b) QNN is the fraction of native contacts in non-native states with the maximum number of
non-native contacts.

(c) δE(QNN ) is the energy gap between native states and average of non-native states at QNN .
(d) ∆E(QNN ) is the roughness of the energy landscape of non-native states. ∆E2 = ∆E2

Top +

∆E2
Ene. ∆ETop is topological roughness, obtained from the results of the plain structure based

simulation. ∆EEne is energetic roughness, defined as
√
Amaxb2.

(e) S(QNN ) is the entropy of non-native states.
(f) Tg is defined as

√
(∆E2(QNN )/2S(QNN )).

(#) Temperature is in the unit of energy scale by multiplying Boltzmann constant k. Length and
energy scale are in the reduced units of Gromacs [3, 4]. τ is in the unit of MD step.
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Figure S31: Folding temperature Tf , glass trapping transition temperature Tg, kinetic
temperature Tχ and optimum temperature T0 as a function of b.

We see in Figure S31 that Tf and Tχ slightly decrease as b increases, which
is consistent with previous studies [31, 82]. In contrast, Tg and T0 increase as b
increases, since increasing energetic roughness increases the role of energetic traps.
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Figure S32: (A) Λ and (B) Tf/Tg as a function of b. Both Λ and Tf/Tg show a
monotonically negative behavior with b.

In Figure S32, Λ and Tf/Tg decreases as the non-native interactions increases.
This indicates that the thermodynamic stability drops as the non-native interactions
increase, whereas, the landscape becomes more bumpy and less smooth as the strong
of non-native interactions is increased.
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Figure S33: Free energy profile at the kinetic temperature Tχ and optimum tem-
perature T0 as a function of native contacts Q for different b. The free energy is
normalized by the corresponding temperature kT .

We see in Figure S33 that either at Tχ or T0, the folding of villin is downhill in
the same way as when no non-native interactions are considered.
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Figure S34: Folding time τ as a function of (A) absolute simulation temperature T
and (B) normalized temperature T/T0 for different b. Folding time is in the unit of
MD step.

The folding time of different non-native interactions changes with temperature
are shown in Figure S34. The behavior is similar as no non-native interactions are
considered in Figure S14. The overall kinetic rate slows down as the non-native
interactions increase.
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2.2.2 Protein: Albumin binding domain (1PRB)
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Figure S35: Thermodynamic results from REMD simulations. (A) Heat capacity
as a function of temperature for different b. The peak of the curve corresponds to
folding temperature Tθ. (B) The standard deviation of χ as a function of temperature
for different b. The peak of the curve corresponds to folding temperature Tf . (C)
Collapsed temperature Tθ, folding temperature Tf and thermodynamic parameter
σ = (Tθ − Tf )/Tf as a function of b. (D) χ as a function of temperature for different
b. The temperatures Tχ at which χ = 0.2 are picked to the do the kinetic simulation.
(E) Free energy profile along Q at the corresponding folding temperature for different
b normalized by the corresponding kTf .
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Figure S36: One dimensional density of states. (A) Log density of states as a func-
tion of energy for different b. (B) Log density of states as a function of fraction of
native contacts Q for different b. The lowest energy En is relocated to 0 for a better
visualization.
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Table S4: Quantities extracted from the density of states for albumin with
different b.

b 0.2 0.4 0.6 0.8 1.0 1.2 1.4

EN -90.85 -91.13 -91.00 -91.11 -91.01 -91.45 -96.17

Amax
(a) 73 82 79 73 74 72 80

QNN
(b) 0.19 0.18 0.16 0.27 0.16 0.18 0.26

δE(QNN ) (c) 166.16 159.18 163.78 154.21 166.60 164.18 169.18

∆E(QNN )Ene
(d) 1.71 3.62 5.33 6.84 8.60 10.18 12.52

∆E(QNN ) (d) 4.82 5.78 6.98 8.19 9.71 11.14 13.31

S(QNN ) (e) 179.96 173.29 177.24 169.26 192.48 186.56 217.48

δE√
2S

8.57 8.26 8.47 8.14 8.37 8.36 8.11

δE
∆E

33.70 26.58 22.83 18.30 16.90 14.51 12.71

Tf 0.98 0.97 0.97 0.96 0.96 0.95 0.88

Tg
(f) 0.25 0.31 0.37 0.45 0.49 0.58 0.64

Tf
Tg

3.92 3.13 2.62 2.13 1.96 1.64 1.38

Λ 1.78 1.43 1.21 0.99 0.86 0.75 0.61

T0 0.80 0.88 0.80 0.86 0.88 0.90 0.91

T0
Tg

8.89 4.89 2.96 2.46 2.05 1.76 1.52

Tχ 0.93 0.92 0.92 0.91 0.91 0.90 0.80

Tχ
Tg

10.33 5.11 3.41 2.60 2.12 1.76 1.33

Tθ 0.97 0.97 0.97 0.96 0.95 0.95 0.89

σ -0.01 0.00 0.00 0.00 -0.01 0.00 0.01

(a) Amax is the maximum number of non-native contacts the protein can form in non-native
states.

(b) QNN is the fraction of native contacts in non-native states with the maximum number of
non-native contacts.

(c) δE(QNN ) is the energy gap between native states and average of non-native states at QNN .
(d) ∆E(QNN ) is the roughness of the energy landscape of non-native states. ∆E2 = ∆E2

Top +

∆E2
Ene. ∆ETop is topological roughness, obtained from the results of the plain structure based

simulation. ∆EEne is energetic roughness, defined as
√
Amaxb2.

(e) S(QNN ) is the entropy of non-native states.
(f) Tg is defined as

√
(∆E2(QNN )/2S(QNN )).

(#) Temperature is in the unit of energy scale by multiplying Boltzmann constant k. Length and
energy scale are in the reduced units of Gromacs [3, 4]. τ is in the unit of MD step.
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Figure S37: Folding temperature Tf , glass trapping transition temperature Tg, kinetic
temperature Tχ and optimum temperature T0 as a function of b.
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Figure S38: (A) Λ and (B) Tf/Tg as a function of b. Both Λ and Tf/Tg show a
monotonically negative behavior with b.
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Figure S39: Free energy profile at the kinetic temperature Tχ and optimum tem-
perature T0 as a function of native contacts Q for different b. The free energy is
normalized by the corresponding temperature kT .

We see in Figure S39 that except for b=1.4, either at Tχ or T0, the folding of
albumin is a one-state downhill folder, which is similar to the results obtains without
non-native interactions. When b=1.4, the free energy at T0 is biased to non-native
states, it is because at this moment the energetic roughness may be more significant
as compared with the barrier height. The low temperature will make the protein trap
easily and slow the folding rate.

32



105

106

107

108

 0.4  0.6  0.8  1

τ

T

b=0.0
b=0.2
b=0.4
b=0.6
b=0.8
b=1.0
b=1.2
b=1.4

105

106

107

108

 0.6  0.7  0.8  0.9  1  1.1  1.2  1.3

τ

T/T0(b)

A

B
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2.2.3 Protein: chymotrypsin inhibitor 2 CI2 (1YPA)

 0

 5000

 10000

 15000

 20000

 25000

 0.85  0.9  0.95  1  1.05  1.1  1.15

C
v

T

b=0.0
b=0.2
b=0.4
b=0.6
b=0.8
b=1.0
b=1.2
b=1.4

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.85  0.9  0.95  1  1.05  1.1  1.15

∆χ

T

b=0.0
b=0.2
b=0.4
b=0.6
b=0.8
b=1.0
b=1.2
b=1.4

 0.93
 0.94
 0.95
 0.96
 0.97
 0.98
 0.99

 1
 1.01
 1.02
 1.03
 1.04

 0  0.2  0.4  0.6  0.8  1  1.2  1.4
 0

 0.2

 0.4

 0.6

 0.8

 1

T σ

b

Tf
Tθ
σ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.85  0.9  0.95  1  1.05  1.1  1.15

χ

T

χ=0.2

b=0.0
b=0.2
b=0.4
b=0.6
b=0.8
b=1.0
b=1.2
b=1.4

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  0.2  0.4  0.6  0.8  1

F(
Q

)/k
T f

Q

b=0.0
b=0.2
b=0.4
b=0.6
b=0.8
b=1.0
b=1.2
b=1.4

A B C

D E

Figure S41: Thermodynamic results from REMD simulations. (A) Heat capacity
as a function of temperature for different b. The peak of the curve corresponds to
folding temperature Tθ. (B) The standard deviation of χ as a function of temperature
for different b. The peak of the curve corresponds to folding temperature Tf . (C)
Collapsed temperature Tθ, folding temperature Tf and thermodynamic parameter
σ = (Tθ−Tf )/Tf as a function of b. The temperatures Tχ at which χ = 0.2 are picked
to the do the kinetic simulation. (E) Free energy profile along Q at the corresponding
folding temperature for different b normalized by the corresponding kTf .
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Figure S42: One dimensional density of states. (A) Log density of states as a func-
tion of energy for different b. (B) Log density of states as a function of fraction of
native contacts Q for different b. The lowest energy En is relocated to 0 for a better
visualization.
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Table S5: Quantities extracted from the density of states for CI2 with different b.

b 0.2 0.4 0.6 0.8 1.0 1.2 1.4

EN -137.56 -137.50 -138.42 -138.37 -138.93 -138.11 -138.04

Amax
(a) 72 72 74 69 74 71 70

QNN
(b) 0.15 0.09 0.15 0.08 0.18 0.22 0.09

δE(QNN ) (c) 217.67 223.31 219.89 223.80 208.08 201.01 220.49

∆E(QNN )Ene
(d) 1.70 3.39 5.16 6.65 8.60 10.11 11.71

∆E(QNN ) (d) 10.28 10.69 11.38 12.12 13.30 14.32 15.49

S(QNN ) (e) 179.93 188.93 177.28 186.30 175.16 170.62 183.16

δE√
2S

10.12 10.30 10.48 10.31 9.74 9.51 10.32

δE
∆E

18.67 18.73 17.34 16.41 13.71 12.26 12.75

Tf 1.03 1.03 1.03 1.03 1.02 1.02 0.94

Tg
(f) 0.54 0.55 0.60 0.63 0.71 0.78 0.81

Tf
Tg

1.91 1.87 1.72 1.63 1.44 1.31 1.16

Λ 0.98 0.96 0.92 0.85 0.73 0.66 0.67

T0 0.95 0.93 0.93 0.96 0.93 0.93 0.90

T0
Tg

11.88 6.20 4.04 3.31 2.45 2.02 1.73

Tχ 1.01 1.01 1.02 1.01 1.00 1.00 0.92

Tχ
Tg

12.62 6.73 4.43 3.48 2.63 2.17 1.77

Tθ 1.03 1.03 1.03 1.03 1.02 1.02 0.94

σ 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(a) Amax is the maximum number of non-native contacts the protein can form in non-native states.
(b) QNN is the fraction of native contacts in non-native states with the maximum number of non-native

contacts.
(c) δE(QNN ) is the energy gap between native states and average of non-native states at QNN .
(d) ∆E(QNN ) is the roughness of the energy landscape of non-native states. ∆E2 = ∆E2

Top+∆E2
Ene.

∆ETop is topological roughness, obtained from the results of the plain structure based simulation.

∆EEne is energetic roughness, defined as
√
Amaxb2.

(e) S(QNN ) is the entropy of non-native states.
(f) Tg is defined as

√
(∆E2(QNN )/2S(QNN )).

(#) Temperature is in the unit of energy scale by multiplying Boltzmann constant k. Length and
energy scale are in the reduced units of Gromacs [3, 4]. τ is in the unit of MD step.
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Figure S43: Folding temperature Tf , glass trapping transition temperature Tg, kinetic
temperature Tχ and optimum temperature T0 as a function of b.
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Figure S44: (A) Λ and (B) Tf/Tg as a function of b. Both Λ and Tf/Tg show a
monotonically negative behavior with b.
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Figure S45: Free energy profile at the kinetic temperature Tχ and optimum tem-
perature T0 as a function of native contacts Q for different b. The free energy is
normalized by the corresponding temperature kT .
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Figure S46: Folding time τ as a function of (A) absolute simulation temperature T
and (B) normalized temperature T/T0 for different b. Folding time is in the unit of
MD step.
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2.2.4 Protein: ARR10-B (1IRZ)
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Figure S47: Thermodynamic results from REMD simulations. (A) Heat capacity
as a function of temperature for different b. The peak of the curve corresponds to
folding temperature Tθ. (B) The standard deviation of χ as a function of temperature
for different b. The peak of the curve corresponds to folding temperature Tf . (C)
Collapsed temperature Tθ, folding temperature Tf and thermodynamic parameter
σ = (Tθ − Tf )/Tf as a function of b.(D) χ as a function of temperature for different
b. The temperatures Tχ at which χ = 0.2 are picked to the do the kinetic simulation.
(E) Free energy profile along Q at the corresponding folding temperature for different
b normalized by the corresponding kTf .

 0

 50

 100

 150

 200

 250

 300

 0  50  100  150  200  250

ln
[n

(E
)]

Energy

b=0.0
b=0.2
b=0.4
b=0.6
b=0.8
b=1.0
b=1.2
b=1.4

 80
 100
 120
 140
 160
 180
 200
 220
 240
 260
 280

 0  0.2  0.4  0.6  0.8  1

ln
[n

(Q
)]

Q

b=0.0
b=0.2
b=0.4
b=0.6
b=0.8
b=1.0
b=1.2
b=1.4

A B

Figure S48: One dimensional density of states. (A) Log density of states as a func-
tion of energy for different b. (B) Log density of states as a function of fraction of
native contacts Q for different b. The lowest energy En is relocated to 0 for a better
visualization.
It seems that as input of the energetic roughness increases, the density of states
become rougher and more bumpy as expected.
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Table S6: Quantities extracted from the density of states for ARR10-B with differ-
ent b.

b 0.2 0.4 0.6 0.8 1.0 1.2

EN -90.91 -90.79 -91.62 -94.56 -91.95 -92.05

Amax
(a) 39 37 47 44 37 38

QNN
(b) 0.31 0.31 0.19 0.27 0.27 0.22

δE(QNN ) (c) 163.87 166.88 183.03 171.97 169.79 192.94

∆E(QNN )Ene
(d) 1.25 2.43 4.11 5.31 6.08 7.40

∆E(QNN ) (d) 5.67 5.97 6.63 7.15 7.98 8.92

S(QNN ) (e) 182.29 182.38 210.84 226.60 226.06 224.55

δE√
2S

8.81 8.86 8.36 8.51 8.14 8.47

δE
∆E

29.66 28.34 25.88 25.31 21.68 20.11

Tf 0.92 0.92 0.91 0.93 0.90 0.86

Tg
(f) 0.30 0.31 0.32 0.34 0.38 0.42

Tf
Tg

3.07 2.97 2.84 2.74 2.37 2.05

Λ 1.55 1.48 1.26 1.19 1.02 0.95

T0 0.67 0.72 0.73 0.76 0.70 0.72

T0
Tg

11.17 6.55 2.94 3.62 2.59 2.18

Tχ 0.70 0.70 0.68 0.68 0.67 0.65

Tχ
Tg

11.67 6.36 4.00 3.24 2.48 1.97

Tθ 0.92 0.92 0.91 0.93 0.90 0.88

σ 0.00 0.00 0.00 0.00 0.00 0.02

(a) Amax is the maximum number of non-native contacts the protein can form in non-native states.
(b) QNN is the fraction of native contacts in non-native states with the maximum number of non-native

contacts.
(c) δE(QNN ) is the energy gap between native states and average of non-native states at QNN .
(d) ∆E(QNN ) is the roughness of the energy landscape of non-native states. ∆E2 = ∆E2

Top+∆E2
Ene.

∆ETop is topological roughness, obtained from the results of the plain structure based simulation.

∆EEne is energetic roughness, defined as
√
Amaxb2.

(e) S(QNN ) is the entropy of non-native states.
(f) Tg is defined as

√
(∆E2(QNN )/2S(QNN )).

(#) Temperature is in the unit of energy scale by multiplying Boltzmann constant k. Length and
energy scale are in the reduced units of Gromacs [3, 4]. τ is in the unit of MD step.
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Figure S49: Folding temperature Tf , glass trapping transition temperature Tg, kinetic
temperature Tχ and optimum temperature T0 as a function of b.
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Figure S50: (A) Λ and (B) Tf/Tg as a function of b. Both Λ and Tf/Tg show a
monotonically negative behavior with b.

In Figure S50, Λ and Tf/Tg decreases as the non-native interactions increases. This
means the thermodynamic stability drops with the non-native interactions increase
while landscape becomes more bumpy and less smooth as non-native interactions
increase.
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Figure S51: Free energy profile at the kinetic temperature Tχ and optimum tem-
perature T0 as a function of native contacts Q for different b. The free energy is
normalized by the corresponding temperature kT .

We see in Figure S51 that either at Tχ or T0, the folding of ARR10-B is one-state
downhill, similar to the situation when no non-native interactions.
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Figure S52: Folding time τ as a function of (A) absolute simulation temperature T
and (B) normalized temperature T/T0 for different b. Folding time is in the unit of
MD step.
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2.2.5 Protein: Bubble protein (1UOY)
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Figure S53: Thermodynamic results from REMD simulations. (A) Heat capacity
as a function of temperature for different b. The peak of the curve corresponds to
folding temperature Tθ. (B) The standard deviation of χ as a function of temperature
for different b. The peak of the curve corresponds to folding temperature Tf . (C)
Collapsed temperature Tθ, folding temperature Tf and thermodynamic parameter
σ = (Tθ − Tf )/Tf as a function of b. (D) χ as a function of temperature for different
b. The temperatures Tχ at which χ = 0.2 are picked to the do the kinetic simulation.
(E) Free energy profile along Q at the corresponding folding temperature for different
b normalized by the corresponding kTf .
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Figure S54: One dimensional density of states. (A) Log density of states as a func-
tion of energy for different b. (B) Log density of states as a function of fraction of
native contacts Q for different b. The lowest energy En is relocated to 0 for a better
visualization.
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Table S7: Quantities extracted from the density of states for bubble with different b.

b 0.2 0.4 0.6 0.8 1.0 1.2

EN -152.88 -152.46 -152.21 -154.38 -150.53 -148.51

Amax
(a) 37 38 38 46 42 37

QNN
(b) 0.13 0.14 0.02 0.06 0.08 0.04

δE(QNN ) (c) 230.28 224.31 241.32 237.05 234.40 241.60

∆E(QNN )Ene
(d) 1.22 2.47 3.70 5.43 6.48 7.30

∆E(QNN ) (d) 10.91 11.10 11.45 11.86 12.43 13.07

S(QNN ) (e) 177.68 177.95 186.41 192.46 183.73 187.62

δE√
2S

10.42 10.56 10.68 10.89 10.30 10.75

δE
∆E

18.01 17.95 18.00 18.02 15.88 15.94

Tf 1.07 1.07 1.07 1.07 1.06 1.03

Tg
(f) 0.58 0.59 0.59 0.60 0.65 0.67

Tf
Tg

1.84 1.81 1.81 1.78 1.63 1.54

Λ 0.96 0.95 0.93 0.92 0.83 0.82

T0 0.80 0.68 0.83 0.85 0.76 0.93

T0
Tg

16.00 6.80 5.19 4.05 2.81 3.00

Tχ 1.05 1.05 1.05 1.05 1.04 1.01

Tχ
Tg

21.00 10.50 6.56 5.00 3.85 3.26

Tθ 1.07 1.07 1.07 1.07 1.06 1.03

σ 0.00 0.00 0.00 0.00 0.00 0.00

(a) Amax is the maximum number of non-native contacts the protein can form in non-native states.
(b) QNN is the fraction of native contacts in non-native states with the maximum number of non-native

contacts.
(c) δE(QNN ) is the energy gap between native states and average of non-native states at QNN .
(d) ∆E(QNN ) is the roughness of the energy landscape of non-native states. ∆E2 = ∆E2

Top + ∆E2
Ene.

∆ETop is topological roughness, obtained from the results of the plain structure based simulation.

∆EEne is energetic roughness, defined as
√
Amaxb2.

(e) S(QNN ) is the entropy of non-native states.
(f) Tg is defined as

√
(∆E2(QNN )/2S(QNN )).

(#) Temperature is in the unit of energy scale by multiplying Boltzmann constant k. Length and energy
scale are in the reduced units of Gromacs [3, 4]. τ is in the unit of MD step.
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Figure S55: Folding temperature Tf , glass trapping transition temperature Tg, kinetic
temperature Tχ and optimum temperature T0 as a function of b.
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Figure S56: (A) Λ and (B) Tf/Tg as a function of b. Both Λ and Tf/Tg show a
monotonically negative behavior with b.
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Figure S57: Free energy profile at the kinetic temperature Tχ and optimum tem-
perature T0 as a function of native contacts Q for different b. The free energy is
normalized by the corresponding temperature kT .

In Figure S57, we see that at temperature Tχ, the free energy is biased to the
native states with 2-state folding and at temperature T0, the folding behavior becomes
downhill.
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Figure S58: Folding time τ as a function of (A) absolute simulation temperature T
and (B) normalized temperature T/T0 for different b. Folding time is in the unit of
MD step.

The folding time of different non-native interactions changes with temperature
are shown in Figure S58. The behavior is similar to the situation with no non-native
interactions as in Figure S20. The overall folding times are longer with increasing
non-native interactions.

References

[1] C. Clementi, H. Nymeyer, and J. N. Onuchic. Topological and energetic factors:
What determines the structural details of the transition state ensemble and ”en-
route” intermediates for protein folding? an investigation for small globular
proteins. J Mol Biol, 298(5):937–953, 2000.

[2] V. Sobolev, A. Sorokine, J. Prilusky, E. E. Abola, and M. Edelman. Automated
analysis of interatomic contacts in proteins. Bioinformatics, 15(4):327–332, 1999.

[3] B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl. Gromacs 4: Algorithms
for highly efficient, load-balanced, and scalable molecular simulation. J Chem
Theory Comput, 4(3):435–447, 2008.

[4] J. K. Noel, P. C. Whitford, K. Y. Sanbonmatsu, and J. N. Onuchic. Smog@ctbp:

45



simplified deployment of structure-based models in gromacs. Nucleic Acids Res,
38:W657–W661, 2010.

[5] Y. Okamoto and Y. Sugita. Replica-exchange molecular dynamics method for
protein folding. Chem Phys Lett, 314(1-2):141–151, 1999.

[6] S. Kumar, D. Bouzida, R. H. Swendsen, P. A. Kollman, and J. M. Rosenberg. The
weighted histogram analysis method for free-energy calculations on biomolecules
.1. the method. J Comput Chem, 13(8):1011–1021, 1992.

[7] M. Andrec, A. K. Felts, E. Gallicchio, and R. M. Levy. Protein folding pathways
from replica exchange simulations and a kinetic network model. Proc Natl Acad
Sci USA, 102(19):6801–6806, 2005.

[8] D. van der Spoel and M. M. Seibert. Protein folding kinetics and thermodynamics
from atomistic simulations. Phys Rev Lett, 96(23), 2006.

[9] S. C. Yang, J. N. Onuchic, A. E. Garcia, and H. Levine. Folding time predictions
from all-atom replica exchange simulations. J Mol Biol, 372(3):756–763, 2007.

[10] N. V. Buchete and G. Hummer. Peptide folding kinetics from replica exchange
molecular dynamics. Phys Rev E, 77(3), 2008.

[11] S. Muff and A. Caflisch. Etna: Equilibrium transitions network and arrhenius
equation for extracting folding kinetics from remd simulations. J Phys Chem B,
113(10):3218–3226, 2009.

[12] B. Derrida. Random-energy model - an exactly solvable model of disordered-
systems. Phys Rev B, 24(5):2613–2626, 1981.

[13] E. I. Shakhnovich and A. M. Gutin. Engineering of stable and fast-folding se-
quences of model proteins. Proc Natl Acad Sci USA, 90(15):7195–7199, 1993.

[14] S. S. Plotkin and J. N. Onuchic. Understanding protein folding with energy
landscape theory - part i: Basic concepts. Q Rev Biophys, 35(2):111–167, 2002.

[15] S. S. Plotkin and J. N. Onuchic. Understanding protein folding with energy
landscape theory - part ii: Quantitative aspects. Q Rev Biophys, 35(3):205–286,
2002.

[16] A. Sali, E. Shakhnovich, and M. Karplus. How does a protein fold. Nature,
369(6477):248–251, 1994.

[17] A. Sali, E. Shakhnovich, and M. Karplus. Kinetics of protein-folding - a lattice
model study of the requirements for folding to the native-state. J Mol Biol,
235(5):1614–1636, 1994.

[18] E. I. Shakhnovich and A. M. Gutin. Implications of thermodynamics of protein
folding for evolution of primary sequences. Nature, 346(6286):773–775, 1990.

[19] E. I. Shakhnovich. Proteins with selected sequences fold into unique native con-
formation. Phys Rev Lett, 72(24):3907–3910, 1994.

[20] D. K. Klimov and D. Thirumalai. Factors governing the foldability of proteins.
Proteins, 26(4):411–441, 1996.

46



[21] D. K. Klimov and D. Thirumalai. Linking rates of folding in lattice mod-
els of proteins with underlying thermodynamic characteristics. J Chem Phys,
109(10):4119–4125, 1998.

[22] D. K. Klimov and D. Thirumalai. Criterion that determines the foldability of
proteins. Phys Rev Lett, 76(21):4070–4073, 1996.

[23] A. R. Dinner, V. Abkevich, E. Shakhnovich, and M. Karplus. Factors that affect
the folding ability of proteins. Proteins, 35(1):34–40, 1999.

[24] M. Karplus, A. R. Dinner, and E. Verosub. Use of a quantitative structure-
property relationship to design larger model proteins that fold rapidly. Protein
Eng, 12(11):909–917, 1999.

[25] R. Melin, H. Li, N. S. Wingreen, and C. Tang. Designability, thermodynamic
stability, and dynamics in protein folding: A lattice model study. J Chem Phys,
110(2):1252–1262, 1999.

[26] J. D. Bryngelson and P. G. Wolynes. Spin-glasses and the statistical-mechanics
of protein folding. Proc Natl Acad Sci USA, 84(21):7524–7528, 1987.

[27] V. I. Abkevich, A. M. Gutin, and E. I. Shakhnovich. Free-energy landscape for
protein-folding kinetics - intermediates, traps, and multiple pathways in theory
and lattice model simulations. J Chem Phys, 101(7):6052–6062, 1994.

[28] J. Wang and G. M. Verkhivker. Energy landscape theory, funnels, specificity,
and optimal criterion of biomolecular binding. Phys Rev Lett, 90(18), 2003.

[29] J. N. Onuchic, Z. LutheySchulten, and P. G. Wolynes. Theory of protein folding:
The energy landscape perspective. Annu Rev Phys Chem, 48:545–600, 1997.

[30] J. Wang, C. Lee, and G. Stell. The cooperative nature of hydrophobic forces and
protein folding kinetics. Chem Phys, 316(1-3):53–60, 2005.

[31] C. Clementi and S. S. Plotkin. The effects of nonnative interactions on protein
folding rates: Theory and simulation. Protein Sci, 13(7):1750–1766, 2004.

[32] C. Clementi, P. Das, and S. Matysiak. Balancing energy and entropy: A min-
imalist model for the characterization of protein folding landscapes. Proc Natl
Acad Sci USA, 102(29):10141–10146, 2005.

[33] D. Thirumalai and D. K. Klimov. Deciphering the timescales and mechanisms of
protein folding using minimal off-lattice models. Curr Opin Struct Biol, 9(2):197–
207, 1999.

[34] D. Thirumalai. From minimal models to real proteins - time scales for protein-
folding kinetics. J Phys I, 5(11):1457–1467, 1995.

[35] C. J. Camacho and D. Thirumalai. Kinetics and thermodynamics of folding in
model proteins. Proc Natl Acad Sci USA, 90(13):6369–6372, 1993.

[36] J. D. Honeycutt and D. Thirumalai. The nature of folded states of globular-
proteins. Biopolymers, 32(6):695–709, 1992.

[37] L. Angelani and G. Ruocco. Saddles of the energy landscape and folding of model
proteins. Europhys Lett, 87(1), 2009.

47



[38] W. Humphrey, A. Dalke, and K. Schulten. Vmd: Visual molecular dynamics. J
Mol Graph, 14(1):33–38, 1996.

[39] P. G. Wolynes. Folding funnels and energy landscapes of larger proteins within
the capillarity approximation. Proc Natl Acad Sci USA, 94(12):6170–6175, 1997.

[40] S. S. Plotkin, J. Wang, and P. G. Wolynes. Statistical mechanics of correlated
energy landscape models for random heteropolymers and proteins. Physica D,
107(2-4):322–325, 1997.

[41] G. Stell, C. L. Lee, and J. Wang. First-passage time distribution and non-
markovian diffusion dynamics of protein folding. J Chem Phys, 118(2):959–968,
2003.

[42] Y. Q. Zhou, C. Zhang, G. Stell, and J. Wang. Temperature dependence of
the distribution of the first passage time: Results from discontinuous molecular
dynamics simulations of an all-atom model of the second beta-hairpin fragment
of protein g. J Am Chem Soc, 125(20):6300–6305, 2003.

[43] C. Clementi, L. L. Chavez, and J. N. Onuchic. Quantifying the roughness on
the free energy landscape: Entropic bottlenecks and protein folding rates. J Am
Chem Soc, 126(27):8426–8432, 2004.

[44] D. P. Raleigh, B. Kuhlman, D. L. Luisi, and P. A. Evans. Global analysis of the
effects of temperature and denaturant on the folding and unfolding kinetics of
the n-terminal domain of the protein l9. J Mol Biol, 284(5):1661–1670, 1998.

[45] H. Kaya and H. S. Chan. Energetic components of cooperative protein folding.
Phys Rev Lett, 85(22):4823–4826, 2000.

[46] V. B. P. Leite, J. N. Onuchic, G. Stell, and J. Wang. Probing the kinetics of
single molecule protein folding. Biophys J, 87(6):3633–3641, 2004.

[47] J. Wang. The complex kinetics of protein folding in wide temperature ranges.
Biophys J, 87(4):2164–2171, 2004.

[48] J. Wang. Diffusion and single molecule dynamics on biomolecular interface bind-
ing energy landscape. Chem Phys Lett, 418(4-6):544–548, 2006.

[49] G. Stell, C. L. Lee, C. T. Lin, and J. Wang. Diffusion dynamics, moments, and
distribution of first-passage time on the protein-folding energy landscape, with
applications to single molecules. Phys Rev E, 67(4), 2003.

[50] A. V. Finkelstein and A. Y. Badretdinov. Rate of protein folding near the point
of thermodynamic equilibrium between the coil and the most stable chain fold.
Fold Des, 2(2):115–121, 1997.

[51] M. Cieplak, T. X. Hoang, and M. S. Li. Scaling of folding properties in simple
models of proteins. Phys Rev Lett, 83(8):1684–1687, 1999.

[52] F. Seno, C. Micheletti, A. Maritan A, J.R. Banavar (1998) Variational approach
to protein design and extraction of interaction potentials. Phys Rev Lett 81:2172–
2175.

48



[53] Chan HS, Kaya H (2002) Towards a consistent modeling of protein thermody-
namic and kinetic cooperativity: How applicable is the transition state picture
to folding and unfolding? J Mol Biol 315:899–909.

[54] Eaton WA, Lipman EA, Schuler B, Bakajin O (2003) Single-molecule measure-
ment of protein folding kinetics. Science 301:1233–1235.

[55] Gruebele M, Nguyen H, Jager M, Moretto A, Kelly JW (2003) Tuning the free-
energy landscape of a ww domain by temperature, mutation, and truncation.
Proc Natl Acad Sci USA 100:3948–3953.

[56] Frauenfelder H, Parak F, Young RD (1988) Conformational substates in proteins.
Annu Rev Biophys Biophys Chem 17:451–479.

[57] Frauenfelder H, Sligar SG, Wolynes PG (1991) The energy landscapes and mo-
tions of proteins. Science 254:1598–1603.

[58] Xie XS, Yang H (2002) Probing single-molecule dynamics photon by photon. J
Chem Phys 117:10965–10979.

[59] Socci ND, Onuchic JN (1995) Kinetic and thermodynamic analysis of proteinlike
heteropolymers - monte-carlo histogram technique. J Chem Phys 103:4732–4744.

[60] Hardin C, Eastwood MP, Prentiss MC, Luthey-Schulten Z, Wolynes PG (2003)
Associative memory hamiltonians for structure prediction without homology:
alpha/beta proteins. Proc Natl Acad Sci USA 100:1679–1684.

[61] Bryngelson JD, Wolynes PG (1989) Intermediates and barrier crossing in a ran-
dom energy-model (with applications to protein folding). J Phys Chem 93:6902–
6915.

[62] Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG (1995) Funnels, pathways,
and the energy landscape of protein-folding - a synthesis. Proteins 21:167–195.

[63] Wang J, Onuchic J, Wolynes P (1996) Statistics of kinetic pathways on biased
rough energy landscapes with applications to protein folding. Phys Rev Lett
76:4861–4864.

[64] Itzhaki LS, Otzen DE, Fersht AR (1995) The structure of the transition-state
for folding of chymotrypsin inhibitor-2 analyzed by protein engineering methods
- evidence for a nucleation-condensation mechanism for protein-folding. J Mol
Biol 254:260–288.

[65] Gruebele M, Sabelko J, Ervin J (1999) Observation of strange kinetics in protein
folding. Proc Natl Acad Sci USA 96:6031–6036.

[66] Eaton WA, Schuler B, Lipman EA (2002) Probing the free-energy surface for
protein folding with single-molecule fluorescence spectroscopy. Nature 419:743–
747.

[67] Chan HS, Dill KA (1994) Solvation - effects of molecular-size and shape. J Chem
Phys 101:7007–7026.

[68] Gutin AM, Abkevich VI, Shakhnovich EI (1996) Chain length scaling of protein
folding time. Phys Rev Lett 77:5433–5436.

49



[69] M. Cieplak and T. X. Hoang. Scaling of folding properties in go models of
proteins. J Biol Phys, 26(4):273–294, 2000.

[70] S. Takada and N. Koga. Roles of native topology and chain-length scaling in
protein folding: A simulation study with a go-like model. J Mol Biol, 313(1):171–
180, 2001.

[71] M. S. Li, D. K. Klimov, and D. Thirumalai. Dependence of folding rates on
protein length. J Phys Chem B, 106(33):8302–8305, 2002.

[72] A. V. Finkelstein, D. N. Ivankov, S. O. Garbuzynskiy, E. Alm, K. W. Plaxco,
and D. Baker. Contact order revisited: Influence of protein size on the folding
rate. Protein Sci, 12(9):2057–2062, 2003.

[73] O. V. Galzitskaya, S. O. Garbuzynskiy, D. N. Ivankov, and A. V. Finkelstein.
Chain length is the main determinant of the folding rate for proteins with three-
state folding kinetics. Proteins, 51(2):162–166, 2003.

[74] M. S. Li, D. K. Klimov, and D. Thirumalai. Thermal denaturation and folding
rates of single domain proteins: size matters. Polymer, 45(2):573–579, 2004.

[75] V. Munoz, A. N. Naganathan, and J. M. Sanchez-Ruiz. Direct measurement of
barrier heights in protein folding. J Am Chem Soc, 127(51):17970–17971, 2005.

[76] A. N. Naganathan and V. Munoz. Scaling of folding times with protein size. J
Am Chem Soc, 127(2):480–481, 2005.

[77] M. Kouza, M. S. Li, E. P. O’Brien, C. K. Hu, and D. Thirumalai. Effect of finite
size on cooperativity and rates of protein folding. J Phys Chem A, 110:671–676,
2006.

[78] S. S. Plotkin, J. Wang, and P. G. Wolynes. Statistical mechanics of a correlated
energy landscape model for protein folding funnels. J Chem Phys, 106(7):2932–
2948, 1997.

[79] D. Baker, K. W. Plaxco, and K. T. Simons. Contact order, transition state place-
ment and the refolding rates of single domain proteins. J Mol Biol, 277(4):985–
994, 1998.

[80] C. M. Dobson, F. Chiti, N. Taddei, P. M. White, M. Bucciantini, F. Magherini,
and M. Stefani. Mutational analysis of acylphosphatase suggests the importance
of topology and contact order in protein folding. Nat Struct Biol, 6(11):1005–
1009, 1999.

[81] A. R. Dinner and M. Karplus. The roles of stability and contact order in deter-
mining protein folding rates. Nat Struct Biol, 8(1):21–22, 2001.

[82] S. S. Plotkin. Speeding protein folding beyond the go model: How a little frus-
tration sometimes helps. Proteins: Struct Funct Bioinform, 45(4):337–345, 2001.

50


