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COMPUTATIONAL DETAILS 

A. Electronic structure calculations 

The geometry optimizations and proton potentials were calculated using density 

functional theory in conjunction with the B3P86 density functional (1, 2) and the Stuttgart (SDD) 

pseudopotential for the Ni center (3), the 6-31G** basis set (4) for the transferring hydrogen, and 

the 6-31G* basis set (5, 6) for all other atoms.  These calculations were performed with Gaussian 

09 (7). 

 

B. Approach 1: Using average structures 

(i) Generating average structures 

In Approach 1, we used average structures generated by averaging the optimized (1a) and 

(2b) structures to calculate both the anodic and the cathodic rate constants, and the anodic and 

cathodic probability distribution functions were assumed to be the same [i.e., a c( ) ( )P R P R ].  

The physical motivation for this approach is that the electron is expected to transfer between the 

complex and the electrode when thermal fluctuations of the complex lead to a structure that is in 

between the equilibrium reduced and oxidized structures.  This approach is consistent with 

Marcus theory and the golden rule formulation, in which the nonadiabatic transition occurs at the 

crossing point between the initial and final states. 

To obtain the average structures at the four Ni–N distances (2.94, 3.04, 3.14, and 3.25 Å), 

we performed a series of geometry optimizations for the (1a) and (2b) species with the Ni–N 

distance constrained to these values. The structures obtained from these constrained 

optimizations were then averaged together using the following procedure. For each Ni–N 

distance, the (1a) and (2b) structures were translated so that Ni was at the origin and rotated so 
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that the N atom involved in the proton transfer was along the negative z-axis. Subsequently, the 

root-mean-square deviation (RMSD) between the two structures was minimized with respect to 

the angle of the rigid structures about the z-axis. The resulting Cartesian coordinates of the (1a) 

and (2b) structures were averaged together to generate an average structure at this Ni–N distance. 

(ii) Generating proton potentials 

 To generate proton potentials for the four different Ni–N distances, we began with the 

four average structures described above. For each average structure, the position of the 

transferring H was optimized for the reduced state (with H on Ni) and the oxidized state (with H 

on N), while all other atoms remained fixed. The hydrogen positions obtained from these 

constrained optimizations were used to define the proton axis for each Ni–N distance by 

connecting the optimized hydrogen positions for the reduced and oxidized states, as shown in 

Figure 3 of the main text. The proton potentials were generated on a one-dimensional grid along 

this axis for each Ni–N distance. Specifically, the hydrogen was moved along a grid of 24 points 

spanning this axis, and a single point DFT calculation with a convergence criterion of 10-8 a.u. 

was performed for each hydrogen position. These energies were then interpolated to create a grid 

of 1024 points using a cubic spline interpolation scheme (8). The sets of proton potentials 

generated for Ni–N distances of 2.94, 3.04, 3.14, and 3.25 Å are shown in Figure 3 of the main 

text. 

(iii) Determining P(R) and k(R) for use in ka and kc 

The Boltzmann probability for sampling different NiN distances is given by P(R). For 

the calculations presented in this paper, we used the classical harmonic probability distribution 

function of the form: 
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In Approach 1, we assumed that a c( ) ( )P R P R  and chose R to be the average Ni–N distance of 

3.25 Å (i.e., the average between the Ni–N distances for the optimized (1a) and (2b) structures). 

The effective force constants, keff, were obtained for the optimized (1a) and (2b) 

structures by expressing the deviation δR of the proton donor-acceptor distance R from its 

equilibrium value R  as a linear combination of normal mode coordinates.  The expansion 

coefficients ci were determined by projecting the normal mode vectors onto the proton donor-

acceptor (i.e., NiN) axis.  Assuming the classical harmonic oscillator form, evaluation of the 

time correlation function of the deviation δR leads to an expression for the effective force 

constant keff that includes contributions from all normal modes (9): 
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where the summation is over all normal modes with force constants ki.  This effective force 

constant corresponds to the second derivative of the electronic energy curve calculated by 

displacing the proton donor-acceptor distance from equilibrium and performing a constrained 

geometry optimization, where the displaced proton donor-acceptor distance is fixed.  In other 

words, this effective force constant corresponds to the harmonic probability distribution function 

along R for which all other degrees of freedom respond instantaneously to changes in R. For the 

systems studied here, keff has values of 0.026409 and 0.020581 a.u. for the optimized (1a) and 

(2b) structures, respectively.  In Approach 1, we used the average of these values, keff = 0.023495 

a.u.  
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 We performed the integration over R given in Eq. (5) numerically using a linear 

interpolation and extrapolation scheme for  kEPT(η;R) based on the values at the four Ni–N 

distances. We also performed these calculations by fitting kEPT(η;R)  to a Gaussian of the form 

2
NiN

0
bRA e  or to an exponential function of the form NiN

0
bRA e .  The rate constants kEPT(η)  were 

qualitatively similar for these various approaches, as shown in Table S1 and Figure S1. 

(iv) Tafel plot of kET vs kEPT 

As mentioned in the main text, the anodic EPT rate constant in Figure 5 exhibits slightly 

unusual curvature in the region 0.4 0.7   V.  This behavior is observed because the 

contributions from the various pairs of vibrational states depend on the overpotential. Analyses 

of the main contributions to the anodic and cathodic rate constants for various values of η are 

given in Tables S2 and S3.  

As shown in Table S2, the main contributions at η = 0 V are from the relatively 

delocalized second and third excited reactant vibrational states with the localized ground product 

state. At η = 0.75 V, the main contribution is from the localized ground reactant state and the 

third excited product state, which is also localized on the same side.  At η = 0.40 V, all three 

pairs of states contribute to the anodic rate constant.  As shown in Table S3, this trend is not 

exhibited by the cathodic rate constant.  These trends are also exhibited for  EPT
a k  when a 

Gaussian or exponential fit of  EPT
a ;k R  is used, as illustrated in Figure S1, which indicates that 

the unusual curvature of  EPT
a k  is much more dramatic for the Gaussian and exponential fits 

than for the linear fit of  EPT
a ;k R . 
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C. Approach 2: Using reduced and oxidized structures for anodic and cathodic rate 

constants, respectively  

 In Approach 2, the reduced and oxidized state structures are used to calculate the anodic 

and cathodic rate constants, respectively, and the anodic and cathodic probability distribution 

functions are different [i.e., a c( ) ( )P R P R ].  The physical motivation for this approach is that the 

structure of the complex is expected to be closer to the equilibrium reduced state structure for the 

anodic process and closer to the equilibrium oxidized state structure for the cathodic process.  In 

this approach, the structure is assumed to respond to the addition or removal of an electron faster 

than the timescale of the electrochemistry.  This perspective differs from Approach 1, which 

assumes that the electron transfer occurs only when thermal fluctuations result in a structure that 

is the average of the equilibrium reduced and oxidized state structures.  The practical advantage 

of Approach 2 is that it avoids the averaging procedure, which could introduce non-physical 

angles and bond lengths.  As shown below, the two approaches give qualitatively similar results, 

although some differences were observed.  Further calculations and comparisons to experiment 

are required to determine which approach is preferable. 

We used the optimized equilibrium (1a) and (2b) geometries, corresponding to Ni–N 

distances of 3.31 Å and 3.20 Å, respectively, as well as the geometries generated by performing 

a series of optimizations for the (1a) and (2b) species with the Ni–N distance constrained to the 

values of 2.94, 3.04, 3.14, and 3.25 Å. Thus, we obtained a set of reduced state structures from 

the (1a) optimizations and a set of oxidized state structures from the (2b) optimizations.  For 

each set of structures, we determined the proton axes using a procedure similar to that used for 

Approach 1.  Specifically, for each structure, we optimized the transferring H for the reduced 

state (with H on Ni) and the oxidized state (with H on N) with all other atoms fixed, and the 
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proton axis was generated by connecting these two optimized hydrogen positions, as depicted in 

Figure 3 in the main text.  The proton potentials were generated by performing single point DFT 

calculations with a convergence criterion of 10-8 a.u. as the hydrogen was moved along a grid of 

24 points spanning this axis and subsequently interpolating to create a grid of 1024 points.  The 

proton potentials generated for the reduced and oxidized state structures are shown in Figure S2.  

Interestingly, for each NiN distance, the averages of the proton potentials for the optimized 

reduced and oxidized state structures used in Approach 2 are nearly identical to the proton 

potentials generated for the average reduced and oxidized state structures used in Approach 1. 

The comparison between the average of the reduced and oxidized state proton potentials used in 

Approach 2 and the proton potentials for the average structures used in Approach 1 is given in 

Figure S3. 

As mentioned above, the anodic and cathodic probability functions, a ( )P R and c ( )P R , are 

different in Approach 2.  In this paper, these probability functions were chosen to be of the form 

given in Eq. (S1) with R  and keff determined from the equilibrium (1a) and (2b) structures, 

respectively.  Thus, 3.31R   Å and keff = 0.026409 a.u. for a ( )P R , and 3.20R   Å and keff = 

0.020581 a.u. for c ( )P R .  The anodic rate constant  EPT
a ;k R  was calculated with Eq. (3) using 

the proton potentials for the reduced state structures, and the overall anodic rate constant 

 EPT
ak   was calculated using Eq. (5) and the probability distribution function a ( )P R  with the 

same linear interpolation–extrapolation scheme for the numerical integration discussed above for 

Approach 1.  The cathodic rate constant  EPT
c ;k R  was calculated with Eq. (4) using the proton 

potentials for the oxidized state structures, and the overall cathodic rate constant  EPT
ck   was 
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calculated using Eq. (5) and the probability distribution function c ( )P R  with the same numerical 

integration procedure as for  EPT
ak  .   

In this approach, the anodic and cathodic rate constants are not equal at η = 0 because 

different proton potentials and probability distribution functions are used.  In this case, the 

standard rate constant can be determined by identifying the overpotential η0 at which the anodic 

and cathodic rate constants are equal. Thus, we numerically determine the appropriate constant 

shift of the standard electrode potential to effectively account for differences in the total partition 

functions of the reduced and oxidized species. For this system, η0 = 0.1236 V.  

We performed similar analyses with Approach 2 as with Approach 1.  The dominant 

distance was found to be RNiN = 3.28 and 3.10 Å for the anodic and cathodic processes, 

respectively. An analysis of the main contributions to the standard rate constants, analogous to 

that in Table 1 and Figure 4 in the main text, is given in Tables S4 and S5 and Figure S4. The 

resulting Tafel plot that compares the ET and EPT rate constants, analogous to Figure 5 in the 

main text, is given in Figure S5.  Note that the anodic EPT rate constant does not exhibit the 

behavior discussed in the main text because the dominant states remain consistent for the region 

of overpotential studied. 
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Table S1: Analysis of the dominant NiN distance and relative standard rate constants for three 
different fits of kEPT(η=0;R) using Approach 1. 
 

type of fit Rdom (Å) ks 
b 

lineara 3.00 1.000 
Gaussian 2.91 1.003 
exponential 2.91 1.081 

aInterpolation–extrapolation scheme 
used for kEPT(η;R) to generate data 
presented in Table 1 and Figure 5 of 
main text. 
bStandard rate constants ( = 0) given 
relative to rate constant obtained with 
linear fit. 
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Table S2: Analysis of main contributions to the anodic rate constant at various values of η for 
Approach 1. 
 

Rdom (Å) * R (Å) * η (V) /  † P ‡ S
2 § 

†
BG k T

e  ¶ % contrib. ll 

3.00 3.04 0.0 2/0 3.8 × 10–6 0.215 6.8 × 10–3 42 
   3/0 1.3 × 10–6 0.571 9.8 × 10–3 55 
        

3.00 3.04 0.40 0/3 1.0 0.426 2.3 × 10–6 39 
   2/0 3.8 × 10–6 0.215 3.5 × 10–1 19 
   3/0 1.3 × 10–6 0.571 4.2 × 10–1 21 
        

3.23 3.25 0.75 0/3 1.0 0.855 3.4 × 10–4 98 
        

3.24 3.25 1.00 0/3 1.0 0.855 1.4 × 10–2 98 
* Rdom is the dominant NiN distance and R is the closest NiN distance for which proton potentials 
were obtained for the reduced complex. 
†μ and ν correspond to the proton vibrational states for the reduced and oxidized states, respectively, of 
the catalyst. 
‡Pμ is the Boltzmann probability for state μ. 
§Sμν is the overlap integral between the proton vibrational wavefunctions associated with states μ and ν. 
¶ †G  is the effective free barrier at the specified value of η and ε = 0. 

ll% contrib. is the percentage contribution to the overall rate constant at that distance R for the specified 
η,  EPT

a ;k R , including only contributions greater than 10%. 
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Table S3: Analysis of main contributions to the cathodic rate constant at various values of η for 
Approach 1. 
 

Rdom (Å) * R (Å) * η (V) /  † P
‡ S

2 § 
†

BG k T
e  ¶ % contrib. ll 

3.00 3.04 0.0 2/0 1.0 0.215 2.6 × 10–8 42 
   3/0 1.0 0.571 1.2 × 10–8 55 
        

3.09 3.14 – 0.40 3/0 1.0 0.867 1.8 × 10–5 99 
        

3.12 3.14 – 0.75 3/0 1.0 0.867 6.5 × 10–3 98 
        

3.13 3.14 – 1.00 3/0 1.0 0.867 1.1 × 10–1 97 
* Rdom is the dominant NiN distance and R is the closest NiN distance for which proton potentials 
were obtained for the reduced complex. 
†μ and ν correspond to the proton vibrational states for the reduced and oxidized states, respectively, of 
the catalyst. 
‡Pν is the Boltzmann probability for state ν. 
§Sμν is the overlap integral between the proton vibrational wavefunctions associated with states μ and ν. 
¶ †G  is the effective free barrier at the specified value of η and ε = 0. 

ll% contrib. is the percentage contribution to the overall rate constant at that distance R for the specified 
η,  EPT

c ;k R , including only contributions greater than 10%.  
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Table S4: Analysis of main contributions to the anodic standard rate constant at a NiN distance 
close to the dominant distance and at the equilibrium NiN distance for Approach 2. 
 

R (Å) * /  † P ‡ S
2 § 

†
BG k T

e  ¶ % contrib. ll 

3.25 0/2 1.0 0.907 6.1 × 10–8 99 
      

3.31 0/2 1.0 0.918 5.1 × 10–8 99 
*The NiN distance of 3.25 Å is 0.03 Å shorter than the dominant 
distance, and the NiN distance of 3.31 Å is the equilibrium distance 
for the reduced complex. 
†μ and ν correspond to the proton vibrational states for the reduced and 
oxidized states, respectively, of the catalyst. 
‡Pμ is the Boltzmann probability for state μ. 
§Sμν is the overlap integral between the proton vibrational 
wavefunctions associated with states μ and ν. 
¶ †G  is the effective free barrier at η = η0 = 0.1236 V and ε = 0. 

 ll % contrib. is the percentage contribution to the overall standard rate 
constant at that distance R,  EPT

a 0 ;k R  , including only 

contributions greater than 10%. 
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Table S5: Analysis of main contributions to the cathodic standard rate constant at a NiN 
distance close to the dominant distance and at the equilibrium NiN distance for Approach 2. 

 

R (Å) * /  † P
‡ S

2 § 
†

BG k T
e  ¶ % contrib. ll 

3.14 1/0 1.0 0.887 4.6 × 10–8 98 
      

3.20 2/0 1.0 0.922 1.2 × 10–8 100 
*The NiN distance of 3.14 Å is 0.04 Å larger than the dominant 
distance, and the NiN distance of 3.20 Å is the equilibrium distance 
for the oxidized complex. 
†μ and ν correspond to the proton vibrational states for the reduced and 
oxidized states, respectively, of the catalyst. 
‡Pν is the Boltzmann probability for state ν. 
§Sμν is the overlap integral between the proton vibrational 
wavefunctions associated with states μ and ν. 
¶ †G  is the effective free barrier at η = η0 = 0.1236 V and ε = 0. 

 ll % contrib. is the percentage contribution to the overall standard rate 

constant at that distance R,  EPT
c 0 ;k R  , including only 

contributions greater than 10%. 
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Figure S1: Electrochemical rate constants as functions of overpotential for the EPT reaction of 
interest generated using Approach 1 with three different fits of kEPT(η;R): linear, Gaussian, and 
exponential. The standard potential for the EPT reaction is chosen to be zero overpotential (η = 
0). 
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Figure S2: Proton potentials for the reduced and oxidized states of the anodic and cathodic 
processes using Approach 2.  (a) & (b): reduced and oxidized states, respectively, of the anodic 
process at Ni–N distances of 2.94, 3.04, 3.14, and 3.31 Å; (c) & (d): reduced and oxidized states, 
respectively, of the cathodic process at Ni–N distances of 2.94, 3.04, 3.14, and 3.20 Å. 
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Figure S3: Comparison between the proton potentials generated in Approach 1 for the average 
geometries obtained by averaging the optimized reduced and oxidized state geometries (solid 
black lines) and the average of the proton potentials generated in Approach 2 for the optimized 
reduced and oxidized state geometries (dashed red lines).  The results are given for geometries 
optimized with the NiN distance constrained to 2.94, 3.04, 3.14, and 3.25 Å, as indicated.  The 
proton potential for the average reduced/oxidized state geometry and the average of the reduced 
and oxidized state proton potentials are in remarkable agreement. 
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Figure S4: Proton potentials and corresponding vibrational wavefunctions for the contributing 
proton vibrational states (as given in Tables S4 and S5) for the reduced state (blue) and the 
oxidized state (red) for Approach 2. (a) & (b): anodic process at the nearly dominant Ni–N 
distance of 3.25 Å and the equilibrium Ni–N distance of 3.31 Å, respectively. (c) & (d): cathodic 
process at the nearly dominant Ni–N distance of 3.14 Å and the equilibrium Ni–N distance of 
3.20 Å, respectively. 
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Figure S5: Electrochemical rate constants as functions of potential for the ET and EPT reactions 
of interest generated using Approach 2.  The rate constants are given relative to ks, the standard 
rate constant for the EPT reaction.  The standard potential for the EPT reaction is chosen to be 
zero overpotential (η = 0), and the standard potentials for the ET reactions are shifted relative to 
this value by their relative reduction potentials.  Thus, the overpotential  is defined to be the 
applied potential relative to the standard potential for the EPT reaction.  The curves are labeled 
according to the specific ET and EPT reactions. 

  



S19 
 

References: 

 

1. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J. 
Chem. Phys. 98:5648-5652. 

2. Perdew JP (1986) Density-functional approximation for the correlation energy of the 
inhomogeneous electron gas. Phys. Rev. B 33:8822-8824. 

3. Dolg M, Wedig U, Stoll H, & Preuss H (1987) Energy-adjusted ab initio pseudopotentials 
for the first row transition elements. J. Chem. Phys. 86:866-872. 

4. Hariharan PC & Pople JA (1973) The Influence of Polarization Functions on Molecular 
Orbital Hydrogenation Energies. Theoret. chim. Acta 28:213-222. 

5. Hehre WJ, Ditchfield R, & Pople JA (1972) Self-Consistent Molecular Orbital Methods. 
XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital 
Studies of Organic Molecules. J. Chem. Phys. 56:2257-2261. 

6. Francl MM, et al. (1982) Self-consistent molecular orbital methods. XXIII. A 
polarization-type basis set for second-row elements. J. Chem. Phys. 77:3654-3665. 

7. Gaussian 09 Revision B.01; Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. 
E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, 
G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; 
Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, 
J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, 
J., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; 
Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. 
C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; 
Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; 
Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; 
Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; 
Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; 
Fox, D. J. Gaussian 09, Revision B.01; Gaussian, Inc.: Wallingford, CT, 2010. 

8. Press WH, Flannery BP, Teukolsky SA, & Vetterling WT (1989) Numerical Recipes: 
The Art of Scientific Computing (Cambridge University Press, New York). 

9. Auer B, Fernandez LE, & Hammes-Schiffer S (2011) Theoretical Analysis of Proton 
Relays in Electrochemical Proton-Coupled Electron Transfer. J. Am. Chem. Soc. 
133:8282-8292. 

 

 


