
Entropy-driven liquid–liquid separation in supercooled water –
Supplement

V. Holten and M. A. Anisimov
Institute for Physical Science and Technology and Department of Chemical and Biomolecular Engineering, University of Maryland,
College Park, Maryland 20742, USA

(Dated: 10 September 2012)

1. TWO-STATE THERMODYNAMICS FOR
SUPERCOOLED WATER

It is convenient to introduce dimensionless variables,

OT =
T

Tc
, OP =

PVc

kBTc
, OG =

G

kBTc
,

∆ OT =
T − Tc

Tc
, ∆ OP =

(P − Pc)Vc

kBTc
,

and rewrite equation (2) for the Gibbs energy of liquid water
as

OG

OT
=
OGA

OT
+x lnK+x ln x+ (1−x) ln(1−x)+ωx(1−x).

(S1)
In the theory of phase transitions, critical behaviour is de-
scribed by two independent scaling fields, the ordering field
h1 and non-ordering field h2, and a scaling field h3 that de-
pends on h1 and h2 and serves as the critical part of a field-
dependent thermodynamic potential. Two scaling densities, a
strongly fluctuating order parameter φ1 and a weakly fluctuat-
ing scaling density φ2, are conjugate to the scaling fields, such
that

dh3 = φ1 dh1 + φ2 dh2. (S2)

As shown by Bertrand and Anisimov,1 the athermal-solution
model given by equation (S1) corresponds to a specific map-
ping of scaling fields to physical fields. For the liquid–liquid
transition in water near the LLCP, the order parameter is as-
sociated with the entropy, contrary to the usual vapour–liquid
critical point where it is associated with the density.2–4 For
our two-state model, the scaling fields can be mapped to the
physical fields as

h1 = − lnK = −
OGBA

OT
,

h2 = −∆ OP ,

h3 = −
2( OG − OGA) − OGBA

OT
+
ω0

2
∆ OP ,

(S3)

as illustrated in Fig. S1. In our model, the non-ordering field
h2 is associated with the pressure, contrary to the vapour–
liquid critical point, where it is associated with the temper-
ature and thus called the ‘thermal field’. The field h3, the crit-
ical part of the thermodynamic potential, is related to OG/ OT in
such a way that at the critical point

φ1 =

�
∂h3

∂h1

�
h2

= 0 and φ2 =

�
∂h3

∂h2

�
h1

= 0. (S4)
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FIG. S1. Scaling fields for the liquid–liquid and liquid–vapour
criticality. The liquid–liquid transition LLT (blue) ends at the criti-
cal point C2. The arrows indicate the directions of the ordering field
h1 and non-ordering field h2. The green curve is the liquid–vapour
transition, which ends at critical point C1. Dashed lines are the cor-
responding Widom lines. The melting curve is shown in brown and
the sublimation curve in pink.

Specifically, for this mapping, the order parameter φ1 is re-
lated to the concentration x = xe as

φ1 = ∆ Ox � (x − xc)/xc, (S5)

where the critical concentration xc = 1/2. Close to the criti-
cal point, the behaviour of the two-state model given by equa-
tion (S1) can be described with mean-field Landau theory.5

To enable a comparison between the model and Landau the-
ory, we transform the field-dependent potential OG( OT , OP )/ OT
to a potential Φ(φ1, h2), which in our model appears to be the
Gibbs energy of mixing, by means of a Legendre transform,

Φ = −(h3 − h1φ1)

= 2
�
x ln x + (1 − x) ln(1 − x)+ ωx(1 − x) −

ω0

4
∆ OP

�
.

(S6)

The truncated expansion of the potential Φ around the critical
point in powers of ∆ Ox and ∆ OP is

Φ ' −
1

2
ω0∆ OP (∆ Ox)

2
+

1

6
(∆ Ox)4.

A comparison with the mean-field Landau expansion,3–5

Φ '
1

2
a0h2φ

2
1 +

1

4!
u0φ

4
1
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where a0 and u0 are system-dependent amplitudes, shows that
for our two-state model a0 = ω0 and u0 = 4.

2. CALCULATION OF PROPERTIES

All thermodynamic properties can be calculated as derivatives
of the Gibbs energy. From equations (S2)–(S3), we derive for
the volume and entropy

OV =

�
∂ OG

∂ OP

�
T

=
OT

2

h
φ2 +

ω0

2
+ L OP (φ1 + 1)

i
+ OV A,

OS = −

�
∂ OG

∂ OT

�
P

= −
OG − OGA

OT
−

1

2
L OT
OT (φ1 + 1)+ OSA,

(S7)

where OV A and OSA are the volume and entropy of pure A, and

L OT �

�
∂ lnK

∂ OT

�
P

= λ(1+ b∆ OP ),

L OP �

�
∂ lnK

∂ OP

�
T

= λ(a+ b∆ OT ).

For the response functions, namely, isothermal compressibil-
ity OκT , thermal expansion coefficient OαP , and isobaric heat
capacity OCP , we find:

OκT OV =
OT

2
(L2
OP
χ1 + 2L OPχ12 + χ2)+ Oκ

A
T
OV A,

OαP OV =
λb

2
OT (φ1 + 1)+

OV − OV A

OT

−

OTL OT
2
(L OPχ1 + χ12)+ Oα

A
P
OV A,

OCP = −L OT
OT (φ1 + 1)+

1

2
L2
OT
OT 2χ1 + OC

A
P . (S8)

where the properties with superscript A are those of pure com-
ponent A. The heat capacity at constant volume CV was cal-
culated using the thermodynamic relation6

CV = CP −
Tα2

P

ρκT
. (S9)

The strong susceptibility χ1, the weak susceptibility χ2, and
the cross susceptibility χ12 are defined as

χ1 =

�
∂φ1

∂h1

�
h2

, χ2 =

�
∂φ2

∂h2

�
h1

,

χ12 =

�
∂φ1

∂h2

�
h1

=

�
∂φ2

∂h1

�
h2

.

To obtain expressions for the scaling densities and suscepti-
bilities, we return to the potential Φ(φ1, h2) of equation (S6).
The differential of Φ is

dΦ = h1 dφ1 − φ2 dh2.

As seen from equation (S7), the entropy after subtracting the
entropy background is proportional to the order parameter φ1.
The weakly fluctuating scaling density is

φ2 = −

�
∂Φ

∂h2

�
φ1

=

�
∂Φ

∂ OP

�
x

= −
ω0

2
(∆ Ox)2. (S10)

The scaling susceptibilities are

χ−1
1 =

�
∂2Φ

∂φ2
1

�
h2

=
1

4

�
∂2Φ

∂x2

�
OP

=
1

2x(1 − x)
− ω. (S11)

χ12 = −

�
∂2Φ

∂φ1∂h2

�
χ1 =

1

2

�
∂2Φ

∂x∂ OP

�
χ1 = −ω0χ1∆ Ox.

χ2 =
χ2

12

χ1
−

�
∂2Φ

∂h2
2

�
φ1

= ω2
0χ1(∆ Ox)

2.

The procedure to calculate the properties at a certain tempera-
ture and pressure is as follows. First, the equilibrium fraction
xe is calculated from equation (3). Then, the scaling densi-
ties and susceptibilities are found from equations (S5), (S10),
and (S11). Finally, the properties are calculated from equa-
tions (S7) and (S8).

3. CROSSOVER PROCEDURE

Fluctuations of the order parameter diverge at the critical point
and significantly alter the mean-field equation of state in the
immediate vicinity of the critical point.2–5 In scaling theory
of critical phenomena, the thermodynamic potential h3 is a
homogeneous function of h1 and h2. Asymptotically:

h3 = jh2j
2−α f ˙

 
h1

jh2j
2−α−β

!
, (S12)

where f ˙ is a scaling function and the superscript ˙ refers
to h2 > 0 and h2 < 0, respectively. The form of the scaling
function is universal; however, it contains two thermodynam-
ically independent (but system-dependent) amplitudes which
are related to all other asymptotic amplitudes by universal re-
lations. The critical exponents α and β are universal within
the Ising model/lattice gas class of critical-point universality.
We assume that the LLCP in supercooled water belongs, like
critical points of all other fluids, to the Ising model/lattice gas
universality class.

For h1 = 0 and h2 > 0, there is a single phase characterized
by φ1 = 0 and

φ2 =

�
∂h3

∂h1

�
h1

=
A+0

1 − α
jh2j

1−α. (S13)

For h1 = 0 and h2 < 0, there are two coexisting phases with

φ1 =

�
∂h3

∂h1

�
h2

= ˙B0jh2j
β, (S14)

and

φ2 = −
A−0

1 − α
jh2j

1−α. (S15)
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While the superscript ˙ refers to the states at h2 > 0 and
h2 < 0, the prefactor ˙ in equation (S14) refers to the
branches of the order parameter on the h1 > 0 and h1 < 0
sides, respectively. In the above expressions A˙0 and B0 are
non-universal amplitudes. The scaling susceptibilities, asymp-
totically and in zero ordering field, h1 = 0:

χ1 = OΓ
˙

0 jh2j
−γ , (S16)

χ2 = OA
˙

0 jh2j
−α , (S17)

χ12 = −β OB0 jh2j
β−1 (h2 < 0) , χ12 = 0 (h2 > 0) ,(S18)

where the critical exponent γ = 2 − α − 2β and the Ising
critical amplitude OΓ˙0 is related to OB0 and OA˙0 through the
universal ratios, α OΓ+0 OA

+

0 /
OB2

0 ' 0.0581, OΓ+0 / OΓ
−

0 ' 4.8, and
OA+0 /
OA−0 ' 0.523.7

To implement a crossover between the asymptotic scaling
behaviour and mean-field behaviour given by equation (S1),
we will renormalize the potential Φ. This renormalization is
carried out by replacing the variables∆ OP and∆ Ox by the vari-
ables ∆ OP� and ∆ Ox�, defined as3,8

∆ OP� = ∆ OP T U−1/2,

∆ Ox� = ∆ OxD1/2U1/4,

where the rescaling functions T , U , and D will be defined
below. In addition, a kernel term k,

k = −
1

2
h2

2K,

responsible for the singularity in the weak susceptibility χ2, is
added to the potential Φ.3,4 Here K is another rescaling func-
tion, defined below. The renormalized potential Φ� becomes

Φ� = 2
�
x� ln x� + (1 − x�) ln(1 − x�)

+ ω(∆ OP�)x�(1 − x�) −
ω0

4
∆ OP�

�
−

1

2
(∆ OP )2K,

where x� = 1
2 (∆ Ox� + 1). Performing a Legendre transform,

we find for the renormalized Gibbs energy OG�

OG�

OT
=

OGA

OT
+ x lnK + x� ln x� + (1 − x�) ln(1 − x�)

+
1

4
ω(∆ OP ) −

�
x� −

1

2

�2
ω(∆ OP�) −

1

4
(∆ OP )2K.

(S19)
The rescaling functions are defined as

T = Y (2ν−1)/∆, U = Y ν/∆,

D = Y (γ−2ν)/∆, K =
c2
t ν

α NuΛ
(Y −α/∆ − 1),

where ∆ is the so-called Wegner’s exponent.3,4 We adopt
the following values of the critical exponents, which corre-
spond to the best theoretical estimates2,9 and experimental
findings:3,4,10

ν = 0.630, ∆ = 0.5,

γ = 1.237, α = 0.110.

The constant ct is defined as3

ct =
a0

c2
ρ

, cρ =
� u0

u� NuΛ

�1/4
,

where the mean-field amplitudes are a0 = ω0 and u0 = 4, the
fixed-point coupling constant of renormalization group the-
ory u� ' 0.472, and Nu and the molecular cutoff Λ are two
crossover parameters. The crossover function Y(κ) is implic-
itly defined by3,4

1 − (1 − Nu)Y = Nu

�
1+

�
Λ

κ

�2�1/2

Y ν/∆. (S20)

The function Y has an asymptotic limit of Y ! (κ/ NuΛ)∆/ν

for κ ! 0 and a limit of 1 for κ � 1, thus providing a smooth
crossover to the mean-field equation of state (S1) far away
from the critical point. To make the crossover function more
explicit, we simplify equation (S20) by adopting Nu = 1,11

Y(κ) =

�
1+

Λ2

κ2

�−∆/(2ν)
.

In this case, the crossover function is characterized by a single
parameterΛ, which is related to the Ginzburg numberNG by3

NG =
n0Λ

2

ct
,

where the universal number n0 ' 0.0314.3 We also adopt
NuΛ = 0.5, which is typical for near-critical fluids,8 thus
Λ = 0.5, giving cρ ' 2. The effective distance from the crit-
ical point κ, which is inversely proportional to the correlation
length of the order-parameter fluctuations,3,8 can be calculated
from the mean-field value κmf with the relation12–14

κ2
=
Y ν/(2∆)

c2
ρ

κ2
mf(x�, ∆

OP�),

where the mean-field distance κmf is evaluated at the renor-
malized concentration x� and pressure ∆ OP�. The mean-field
distance is related to the mean-field strong susceptibility χ1,mf

according to

κ2
mf = χ

−1
1,mf.

With the expression for χ1,mf [equation (S11)], we obtain

κ2
=
Y ν/(2∆)

c2
ρ

�
1

2x�(1 − x�)
− ω(∆ OP�)

�
. (S21)

Together with equation (S19), the condition for chemical re-
action equilibrium, (∂ OG�/∂x) OP , OT = 0, yields the condition
for the equilibrium concentration x = xe,

lnK +

�
∂x�

∂x

�
P

�
ln

�
x�

1 − x�

�
+ ω(∆ OP�)(1 − 2x�)

�
−

�
x� −

1

2

�2

ω0

�
∂∆ OP�

∂x

�
P

+
1

2

�
∂k

∂x

�
P

= 0.

(S22)
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This equation is the crossover analogue of equation (3). The
order parameter φ1, like in the mean-field approximation, is
related to the concentration x by

φ1 = ∆ Ox.

Analogous to the mean-field case, the scaling densities and
susceptibilities are found as derivatives of the potential Φ�.
The scaling density φ2 is

φ2 =

�
∂Φ�

∂ OP

�
x

= 2

�
∂x�

∂ OP

�
x

�
ln

�
x�

1 − x�

�
+ ω(∆ OP�)(1 − 2x�)

�
+ 2

�
∂∆ OP�

∂ OP

�
x

ω0
�
x�(1 − x�) − 1/4

�
+

�
∂k

∂ OP

�
x

.

The strong susceptibility χ1 is given by

χ−1
1 =

1

4

�
∂2Φ�

∂x2

�
P

=
1

2

(�
∂2x�

∂x2

�
P

ln

�
x�

1 − x�

�
+

�
∂x�

∂x

�2

P

1

x�(1 − x�)

− 2ω(∆ OP�)

"�
∂x�

∂x

�2

P

+ (x� − 1/2)

�
∂2x�

∂x2

�
P

#
− 4(x� − 1/2)

�
∂x�

∂x

�
P

ω0

�
∂∆ OP�

∂x

�
P

− (x� − 1/2)2ω0

�
∂2∆ OP�

∂x2

�
P

)
+

1

4

�
∂2k

∂x2

�
P

.

The cross susceptibility χ12 is given by

χ12 =
1

2

�
∂2Φ�

∂x∂ OP

�
χ1

= χ1

(
∂2x�

∂x∂ OP

�
ln

�
x�

1 − x�

�
− 2(x� − 1/2)ω(∆ OP�)

�
+

�
∂x�

∂x

�
P

�
∂x�

∂ OP

�
x

�
1

x�(1 − x�)
− 2ω(∆ OP�)

�
− 2(x� − 1/2)ω0

��
∂x�

∂x

�
P

�
∂∆ OP�

∂ OP

�
x

+

�
∂x�

∂ OP

�
x

�
∂∆ OP�

∂x

�
P

�
− (x� − 1/2)2ω0

∂2∆ OP�

∂x∂ OP

)
+

1

2

∂2k

∂x∂ OP
.

The weak susceptibility χ2 is given by

χ2 =
χ2

12

χ1
−

�
∂2Φ�

∂ OP 2

�
x

=
χ2

12

χ1
− 2

(�
∂2x�

∂ OP 2

�
x

�
ln

�
x�

1 − x�

�
+ ω(∆ OP�)(1 − 2x�)

�
+

�
∂x�

∂ OP

�2

x

�
1

x�(1 − x�)
− 2ω(∆ OP�)

�
−

�
∂2∆ OP�

∂ OP 2

�
x

ω0(x� − 1/2)2

+ 2ω0

�
∂∆ OP�

∂ OP

�
x

(1 − 2x�)

�
∂x�

∂ OP

�
x

)
−

�
∂2k

∂ OP 2

�
x

.

The procedure to calculate the properties at a certain temper-
ature and pressure is as follows. First, the equilibrium frac-
tion xe and the distance κ are calculated by solving the set
of equations (S21) and (S22). Then, the scaling densities and
susceptibilities are computed using the equations in this sec-
tion. Finally, the properties are calculated from equations (S7)
and (S8).

4. FIT TO EXPERIMENTAL DATA

A. Ordinary water

The LLT curve in the P –T plane is represented by the curve
lnK = 0. Because the LLT curve is located in the experimen-
tally inaccessible region, there is only indirect experimental
evidence of its location. Mishima measured metastable melt-
ing curves of H2O ice IV15 and D2O ices IV and V,16 and
found that they suddenly bent at temperatures of 4 K to 7 K be-
low TH, which suggests that the ice melts to a different liquid
phase there. Kanno and Angell17 fitted empirical power laws
to their compressibility measurements and found that the tem-
peratures of apparent divergences of the compressibility were
located 5 K to 12 K below the homogeneous nucleation curve.
The curve of temperatures of divergence of Kanno and Angell
and Mishima’s LLT curve18 are similar; they have the same
shape as the homogeneous nucleation curve but are shifted to
lower temperature and pressure. A simple equation that fairly
reproduces the shape of the homogeneous nucleation curve is
a hyperbola. At low temperature, this curve becomes relatively
flat in the P –T diagram, which is necessary for a connection
with the amorphous LDA/HDA transition. To satisfy this fea-
ture, we adopt the equilibrium constant as

lnK = λ(∆ OT + a∆ OP + b∆ OT∆ OP ).

Here a = −d OT /d OP is the slope of the LLT curve (lnK = 0)
at the critical point, and b determines the curvature.

For H2O, the data set to which the equation of state was
fitted covers the range of 140 K to 310 K and 0.1 MPa
to 400 MPa, contains 252 points, and contains data for the
density, isothermal compressibility, thermal expansion coef-
ficient, isobaric heat capacity, and speed of sound. The data
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TABLE S1. Parameters for the crossover equation of state for H2O

Parameter Value Parameter Value

Tc/K 227.42 c05 2.165 2 � 10−5

Pc/MPa 13.45 c11 1.773 8 � 10−1

ρc/(kg m−3) 928.46 c12 −2.103 2 � 10−2

λ 2.309 6 c13 2.166 0 � 10−3

ω0 0.352 53 c20 −3.922 8 � 100

NG 0.092 c21 1.149 5 � 10−2

a 0.065 306 c22 −8.426 3 � 10−3

b −0.280 51 c23 −9.565 7 � 10−4

c02 −8.157 7 � 10−3 c30 7.084 8 � 10−1

c03 1.096 9 � 10−3 c31 2.061 3 � 10−3

c04 −2.624 4 � 10−4 c32 2.021 7 � 10−2

set is identical to the ‘extended-range’ data set discussed in
Ref. 19, except for the following differences. In the current set
we have included densities of low-density and high-density
amorphous ice,20 because we assume that the liquid–liquid
phase transition is connected to the amorphous–amorphous
phase transition that exists below about 140 K. Second, we
have fitted the model to heat-capacity data of Angell et al.21

instead of Archer and Carter,22 because the deviations from
data for the heat capacity, expansivity, and density were lower
when the data of Angell et al. were used.

We have fitted both the mean-field and the crossover equa-
tion of state to the experimental data. For the mean-field equa-
tion of state, the optimum locations of the critical point form
a narrow band in the P –T diagram, which extends approxi-
mately from 222 K and −50 MPa to 240 K and 30 MPa. The
most likely location of the LLT curve, as follows from the sug-
gestions of Mishima16 and Kanno and Angell,17 intersects the
band of optimum critical point locations at about zero pres-
sure; see Fig. S2(a). For the crossover equation of state, the
region of possible critical point locations is similar to that of
the mean-field model, but shifted by about 10 MPa to higher
pressures, as shown in Fig. S2(b). The best fit for the critical
point is obtained at about 227 K and 13.5 MPa; a list of all
parameter values is given in Table S1. It is not surprising that
the fit of the mean-field version of our equation of state has
the same quality as the fit of the crossover version, because
the experimental data are located beyond the region strongly
affected by fluctuations (h1, h2 � NG � 0.1, typical for a
liquid–liquid transition24).

B. Heavy water

For D2O, the data set covers the range of 240 K to 305 K and
0.1 MPa to 150 MPa, and contains 169 points, as described
in Ref. 19. The fit of the crossover equation of state yields a
region of critical point locations that is broader than for H2O,
which is the result of a lack of accurate data for the density of
low-density and high-density amorphous D2O. The location
of the critical point was constrained by using the principle of

TABLE S2. Parameters for the crossover equation of state for D2O

Parameter Value Parameter Value

Tc/K 232.25 c05 −8.909 9 � 10−6

Pc/MPa 13.36 c11 1.928 7 � 10−1

ρc/(kg m−3) 1004.0 c12 −8.222 2 � 10−3

λ 3.150 5 c13 −2.150 6 � 10−3

ω0 0.329 59 c20 −4.214 9 � 100

NG 0.098 c21 1.364 0 � 10−2

a 0.058 0 c22 −4.948 6 � 10−2

b −0.274 2 c23 4.767 7 � 10−3

c02 −1.229 4 � 10−2 c30 6.987 2 � 10−1

c03 1.896 2 � 10−3 c31 −9.726 8 � 10−2

c04 −1.504 5 � 10−4 c32 8.996 9 � 10−2

corresponding states, that is, the critical compressibility factor

Zc =
Pcvc

kBTc
(S23)

where vc is the critical molecular volume, should be the same
for H2O and D2O. With this constraint, the optimum critical
point was found at 232 K and 13.4 MPa; see Table S2. The
density and response functions are shown in Figs. S3 and S4.

5. HEAT CAPACITY BELOW THE CRITICAL
TEMPERATURE

As Fig. 4b shows, the predicted isobaric and isochoric heat
capacities CP and CV show strong asymmetry around their
maxima. The source of this asymmetry is the term propor-
tional to φ1 + 1 = 2x in equation (S8). In our equation of
state, the temperature dependence of the fraction x is exactly
antisymmetric (Fig. 6), which results in the large asymme-
try of the heat capacity. Without the contribution from the 2x
term, the heat capacity would be almost symmetric, as the dot-
ted line in Fig. 4b shows. The only source of asymmetry in
this case is the noncritical background. The experimental data
on the heat capacity of confined water32 suggest that some
asymmetry may be present, but not as much as our equation
of state predicts. If needed, the degree of asymmetry can be
easily changed by adding a cubic term with respect to x in the
non-ideal part of equation (S1).

6. FRACTION OF THE LOW-DENSITY STATE

In Fig. 6 of the main article, we compare the fraction x in
the two-state model with the fraction f of four-coordinated
molecules in the simulations of the mW model performed by
Moore and Molinero.33 In the mW simulations, the fraction
f does not vanish at room temperature since the pure high-
density liquid is a mixture of four-coordinated and higher-
coordinated molecules. In the low-density liquid, on the other
hand, nearly all molecules are four-coordinated. To convert f
to x, we assume that the fractions x and f are related by

f = xfLDL + (1 − x)fHDL, (S24)
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FIG. S2. Optimization of the LLCP location. a, Mean-field equation of state, b, Crossover equation of state. The coloured map shows the
reduced sum of squared residuals. The solid red line is the hypothesized LLT curve. The dashed curve shows the temperature of homogeneous
ice nucleation.23 The blue dotted curve is the LLT suggestion by Mishima18 and the green dotted curve is the ‘singularity’ line suggested by
Kanno and Angell.17
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FIG. S3. Density of cold and supercooled D2O as a function
of temperature and pressure. Black curves are the predictions of
the crossover two-state model. TM (thin black) indicates the melt-
ing temperature25 and TH indicates the homogeneous nucleation
temperature.26 The thin blue line is the liquid–liquid equilibrium
curve, with the critical point C. Symbols represent experimental
data.27–31

where fLDL ' 1. For fHDL = 0.2, the high-temperature tail
of the mW fraction x is close to the fraction x in the two state
model, as shown in Fig. S5. As noted in Ref. 33, the sigmoid-
like form of x points to strong cooperativity for both real wa-
ter and the mW model that evidences the strong non-ideality
which eventually leads to phase separation, real or virtual.
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