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Supplementary Table 1. Saccharomyces cerevisiae knockout strains used in this 

study. 

Strain Ploidy Notes Ref. 

Parental strains 

BY4741 Haploid MATa; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0 1,2 

BY4743 Diploid MATa/MATα; his3Δ1/his3Δ1; leu2Δ0/leu2Δ0; MET15/met15Δ0; 
LYS2/lys2Δ0; ura3Δ0/ura3Δ0 

1,2 

BY4741 Haploid rhoO 3 

Knockout strains - General apoptosis-related factors 

AIF1 
(CPD1) 

Haploid Mitochondrial cell death effector that translocates to the nucleus in 
response to apoptotic stimuli, homolog of mammalian apoptosis-inducing 
factor (AIF), putative reductase. 

4,5 

CYC1 Haploid Cytochrome c isoform 1; electron carrier of the mitochondrial 
intermembrane space that transfers electrons from ubiquinone-
cytochrome c oxidoreductase to cytochrome c oxidase during cellular 
respiration. 

6-14 

CYC7 Haploid Cytochrome c isoform 2, expressed under hypoxic conditions; electron 
carrier of the mitochondrial intermembrane space that transfers electrons 
from ubiquinone-cytochrome c oxidoreductase to cytochrome c oxidase 
during cellular respiration. 

15-17 

MCA1 
(YCA1) 

Haploid Putative cysteine protease similar to mammalian caspases, involved in 
regulation of apoptosis upon hydrogen peroxide (H2O2) treatment.; 
contributes to clearance of insoluble protein aggregates during normal 
growth; may be involved in cell cycle progression. 

18-22 

NDI1 Haploid NADH:ubiquinone oxidoreductase, transfers electrons from NADH to 
ubiquinone in the respiratory chain but does not pump protons, in 
contrast to the higher eukaryotic multisubunit respiratory complex I; 
phosphorylated; homolog of human AMID. 

23-28 

NMA111 
 

Haploid Serine protease and general molecular chaperone; involved in response to 
heat stress and promotion of apoptosis; may contribute to lipid 
homeostasis; sequence similarity to the mammalian Omi/HtrA2 family of 
serine proteases. 

29-32 

NUC1 Haploid Major mitochondrial nuclease, has RNAse and DNA endo- and 
exonucleolytic activities; has roles in mitochondrial recombination, 
apoptosis and maintenance of polyploidy. 

17, 
33-36 

Knockout strains - Proteases 

PEP4 
(yscA; PRA1; 
PHO9) 

Haploid Vacuolar aspartyl protease (proteinase A), required for the 
posttranslational precursor maturation of vacuolar proteinases; important 
for protein turnover after oxidative damage; synthesized as a zymogen, 
self-activates.  

17, 
37-43 

RIM13 
(CPL1) 
 

Haploid Calpain-like cysteine protease involved in proteolytic activation of 
Rim101p in response to alkaline pH; has similarity to Aspergillus 
nidulans palB. 

44 



Knockout strains – Proteins related to the permeability transition pore complex (PTPC) 

AAC1 Haploid Mitochondrial inner membrane ADP/ATP translocator, exchanges 
cytosolic ADP for mitochondrially synthesized ATP; phosphorylated; 
Aac1p is a minor isoform while Pet9p is the major ADP/ATP 
translocator. 

17, 
45-47 

AAC3 
(ANC3) 

Haploid Mitochondrial inner membrane ADP/ATP translocator, exchanges 
cytosolic ADP for mitochondrially synthesized ATP; expressed under 
anaerobic conditions; similar to Pet9p and Aac1p; has roles in 
maintenance of viability and in respiration. 

17, 
48-50 

 
 

POR1 
(OMP2) 

Haploid Mitochondrial porin (voltage-dependent anion channel), outer membrane 
protein required for the maintenance of mitochondrial osmotic stability 
and mitochondrial membrane permeability; phosphorylated. 

17, 
51-57 

POR2 Haploid Putative mitochondrial porin (voltage-dependent anion channel), related 
to Por1p but not required for mitochondrial membrane permeability or 
mitochondrial osmotic stability. 

17,40, 
55,58,59 

Knockout strains – Autophagy-related proteins 

ATG5 
(APG5) 

Haploid Conserved protein involved in autophagy and the Cvt pathway; 
undergoes conjugation with Atg12p to form a complex involved in Atg8p 
lipidation; conjugated Atg12p also forms a complex with Atg16p that is 
essential for autophagosome formation. 

60-65 

ATG10 
(APG10) 

Haploid Conserved E2-like conjugating enzyme that mediates formation of the 
Atg12p-Atg5p conjugate, which is a critical step in autophagy.  

66-68 

ATG12 
(APG12) 

Haploid Conserved ubiquitin-like modifier involved in autophagy and the Cvt 
pathway; conjugated to Atg5p to form a complex involved in Atg8p 
lipidation; Atg12p-Atg5p also forms a complex with Atg16p that is 
required for autophagosome formation. 

65, 
67-70 

VPS30 
(VPT30; 
ATG6; APG6) 

Haploid Subunit of phosphatidylinositol (PtdIns) 3-kinase complexes I and II; 
Complex I is essential in autophagy and Complex II is required for 
vacuolar protein sorting; ortholog of the higher eukaryotic gene Beclin 1. 

71-73 

VPS34  
(PEP15, STT8,  
VPL7, VPS7, 
VPT29) 

Haploid Phosphatidylinositol 3-kinase responsible for the synthesis of 
phosphatidylinositol 3-phosphate; forms membrane-associated signal 
transduction complex with Vps15p to regulate protein sorting; activated 
by the GTP-bound form of Gpa1p.  

74-79 

Knockout strains – Proteins involved in mitochondrial fusion and fission 

DNM1 Haploid Dynamin-related GTPase required for mitochondrial fission and the 
maintenance of mitochondrial morphology, assembles on the cytoplasmic 
face of mitochondrial tubules at sites at which division will occur; also 
participates in endocytosis and regulating peroxisome abundance. 

80-90 

FIS1 
(MDV2) 
 

Haploid Protein involved in mitochondrial membrane fission and peroxisome 
abundance; required for localization of Dnm1p and Mdv1p during 
mitochondrial division; mediates ethanol-induced apoptosis and ethanol-
induced mitochondrial fragmentation. 

55,82,85, 
87,91-95 

MDM10 
(FUN37) 

Haploid Subunit of both the ERMES complex that links the ER to mitochondria, 
and of the mitochondrial sorting and assembly machinery (SAM 
complex) that functions in import and assembly of outer membrane beta-
barrel proteins. 

55,79, 
96-99 



MGM1 
(MNA1) 

Haploid Mitochondrial GTPase, present in complex with Ugo1p and Fzo1p; 
required for mt morphology and genome maintenance; exists as long and 
short form with different distributions; homolog of human OPA1 
involved in autosomal dominant optic atrophy. 

96, 
100-104 

MIR1 Haploid Mitochondrial phosphate carrier, imports inorganic phosphate into 
mitochondria; functionally redundant with Pic2p but more abundant than 
Pic2p under normal conditions; phosphorylated. 

17,40, 
56,59, 

105-107 

OXA1 Haploid Mitochondrial inner membrane insertase, mediates the insertion of both 
mitochondrial- and nuclear-encoded proteins from the matrix into the 
inner membrane, interacts with mitochondrial ribosomes; conserved from 
bacteria to animals. 

17, 
108-116 

PCP1 
(MDM37, 
RBD1) 
 

Haploid Mitochondrial serine protease required for the processing of various 
mitochondrial proteins and maintenance of mitochondrial DNA and 
morphology; belongs to the rhomboid-GlpG superfamily of 
intramembrane peptidases. 

77, 
117,118 

SAM37 
(MAS37, 
PET3027, 
TOM37) 

Haploid Component of the Sorting and Assembly Machinery (SAM or TOB 
complex) of the mitochondrial outer membrane, which binds precursors 
of beta-barrel proteins and facilitates their outer membrane insertion; 
contributes to SAM complex stability. 

17,55, 
119,120 

TIM18 Haploid Component of the mitochondrial TIM22 complex involved in insertion of 
polytopic proteins into the inner membrane; may mediate assembly or 
stability of the complex. 

17,121 

Knockout strains – Cell cycle regulators 

CHK1 Haploid Serine/threonine kinase and DNA damage checkpoint effector, mediates 
cell cycle arrest via phosphorylation of Pds1p; phosphorylated by 
checkpoint signal transducer Mec1p; homolog of Saccharomyces pombe 
and mammalian Chk1 checkpoint kinase. 

122-125 

MBP1 Haploid Transcription factor involved in regulation of cell cycle progression from 
G1 to S phase, forms a complex with Swi6p that binds to MluI cell cycle 
box regulatory element in promoters of DNA synthesis genes. 

59, 
126-130 

Knockout strains – Proteins involved in DNA replication and repair 

MCM2 Diploid Protein involved in DNA replication; component of the Mcm2-7 
hexameric complex that binds chromatin as a part of the pre-replicative 
complex. 

131-140 

MCM3 Diploid Protein involved in DNA replication; component of the Mcm2-7 
hexameric complex that binds chromatin as a part of the pre-replicative 
complex. 

59,131-135, 
138-140 

MCM5 
(BOB1, 
CDC46) 

Diploid Component of the hexameric MCM complex, which is important for 
priming origins of DNA replication in G1 and becomes an active ATP-
dependent helicase that promotes DNA melting and elongation when 
activated by Cdc7p-Dbf4p in S-phase. 

138, 
140-147 

MCM6 
 

Diploid Protein involved in DNA replication; component of the Mcm2-7 
hexameric complex that binds chromatin as a part of the pre-replicative 
complex. 

131-135, 
138140, 
148,149 



MSH6 
(PMS3) 
 

Haploid Protein required for mismatch repair in mitosis and meiosis, forms a 
complex with Msh2p to repair both single-base and insertion-deletion 
mispairs; potentially phosphorylated by Cdc28p. 

30, 
150-158 

PSF2 
(CDC102) 

Diploid Subunit of the GINS complex (Sld5p, Psf1p, Psf2p, Psf3p), which is 
localized to DNA replication origins and implicated in assembly of the 
DNA replication machinery. 

159-161 

Knockout strains – Proteins involved in chromatin structure 

NHP6A Haploid High-mobility group (HMG) protein that binds to and remodels 
nucleosomes; involved in recruiting FACT and other chromatin 
remodelling complexes to the chromosomes; functionally redundant with 
Nhp6Bp; homologous to mammalian HMGB1 and HMGB2. 

162-165 

NHP6B 
(YBR090C-A) 

Haploid High-mobility group (HMG) protein that binds to and remodels 
nucleosomes; involved in recruiting FACT and other chromatin 
remodelling complexes to the chromosomes; functionally redundant with 
Nhp6Ap; homologous to mammalian HMGB1 and HMGB2. 

162-166 

Knockout strains – Kinases 

ADK1  
(AKY1, KY2) 

Haploid Adenylate kinase, required for purine metabolism; localized to the 
cytoplasm and the mitochondria; lacks cleavable signal sequence. 

17, 
167-169 

ADK2  
(AKY3, PAK3) 

Haploid Mitochondrial adenylate kinase, catalyzes the reversible synthesis of GTP 
and AMP from GDP and ADP; may serve as a back-up for synthesizing 
GTP or ADP depending on metabolic conditions; 3' sequence of ADK2 
varies with strain background. 

17, 
170,171 

GLK1  
(HOR3) 

Haploid Glucokinase, catalyzes the phosphorylation of glucose at C6 in the first 
irreversible step of glucose metabolism; one of three glucose 
phosphorylating enzymes; expression regulated by non-fermentable 
carbon sources. 

30, 
172-175 

HXK1 Haploid Hexokinase isoenzyme 1, a cytosolic protein that catalyzes 
phosphorylation of glucose during glucose metabolism; expression is 
highest during growth on non-glucose carbon sources; glucose-induced 
repression involves the hexokinase Hxk2p. 

30,173, 
174,176, 

177 

HXK2 
(HEX1, HKB, 
SCI2) 

Haploid Hexokinase isoenzyme 2 that catalyzes phosphorylation of glucose in the 
cytosol; predominant hexokinase during growth on glucose; functions in 
the nucleus to repress expression of HXK1 and GLK1 and to induce 
expression of its own gene. 

56, 
173,174, 
176-185 

TOR1 
(DRR1) 

Haploid PIK-related protein kinase and rapamycin target; subunit of TORC1, a 
complex that controls growth in response to nutrients by regulating 
translation, transcription, ribosome biogenesis, nutrient transport and 
autophagy; involved in meiosis. 

186-211 

Knockout strains – Chaperons (members of the heat-shock protein family) 

ECM10 
(SSC3) 

Haploid Heat shock protein of the HSP70 family, localized in mitochondrial 
nucleoids, plays a role in protein translocation, interacts with Mge1p in 
an ATP-dependent manner; overexpression induces extensive 
mitochondrial DNA aggregations. 

17,40, 
212,213 



SSQ1 
(SSC2, SSH1) 

Haploid Mitochondrial HSP70-type molecular chaperone, required for assembly 
of iron/sulfur clusters into proteins at a step after cluster synthesis, and 
for maturation of Yfh1p, which is a homolog of human frataxin 
implicated in Friedreich's ataxia. 

17, 
214-217 

Knockout strains – Others 

CPR3 
(CYP3) 

Haploid Mitochondrial peptidyl-prolyl cis-trans isomerase (cyclophilin), catalyzes 
the cis-trans isomerization of peptide bonds N-terminal to proline 
residues; involved in protein refolding after import into mitochondria. 

17,40, 
218 

CYB5 Haploid Cytochrome b5, involved in the sterol and lipid biosynthesis pathways; 
acts as an electron donor to support sterol C5-6 desaturation. 

219,220 

GTT2 Haploid Glutathione S-transferase capable of homodimerization; functional 
overlap with Gtt2p, Grx1p, and Grx2p. 

17,40, 
221-223 

NNT1 Haploid Putative nicotinamide N-methyltransferase, has a role in rDNA silencing 
and in lifespan determination. 

224,225 

SOD2 Haploid Mitochondrial manganese superoxide dismutase, protects cells against 
oxygen toxicity; phosphorylated. 

17,40,59, 
226-233 

TDH1 
(GLD3) 

Haploid Glyceraldehyde-3-phosphate dehydrogenase, isozyme 1, involved in 
glycolysis and gluconeogenesis; tetramer that catalyzes the reaction of 
glyceraldehyde-3-phosphate to 1,3 bis-phosphoglycerate; detected in the 
cytoplasm and cell-wall. 

17, 
234-236 

TDH2 
(GLD2) 

Haploid Glyceraldehyde-3-phosphate dehydrogenase, isozyme 2, involved in 
glycolysis and gluconeogenesis; tetramer that catalyzes the reaction of 
glyceraldehyde-3-phosphate to 1,3 bis-phosphoglycerate; detected in the 
cytoplasm and cell-wall. 

56,59, 
234-236 

TDH3 
(GLD1, SP35,  
HSP36, SSS2) 
 

Haploid Glyceraldehyde-3-phosphate dehydrogenase, isozyme 3, involved in 
glycolysis and gluconeogenesis; tetramer that catalyzes the reaction of 
glyceraldehyde-3-phosphate to 1,3 bis-phosphoglycerate; detected in the 
cytoplasm and cell-wall. 

17,56,59, 
234-236 

TRX3 Haploid Mitochondrial thioredoxin, highly conserved oxidoreductase required to 
maintain the redox homeostasis of the cell, forms the mitochondrial 
thioredoxin system with Trr2p, redox state is maintained by both Trr2p 
and Glr1p. 

17,40, 
237,238 

YNL305C 
(YBH3) 

Haploid Hypothetical protein; green fluorescent protein (GFP)-fusion protein 
localizes to the vacuole; YNL305C is not an essential gene. 

30,239 

 
S. cerevisiae mutant strains were obtained from Euroscarf (Frankfurt, Germany). When gene deletion resulted in the 

inviability of haploid cells (BY4741 strain), the analysis was performed on the corresponding heterozygous knockouts 

(in the diploid strain BY4743). Official gene symbols and notes were found in the NCBI – Entrez Gene Database 

(http://www.ncbi.nlm.nih.gov/sites/entrez).  
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